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Abstract 

Kidney disease, encompassing acute and chronic conditions, is a 

major challenge for modern medicine and healthcare systems 

around the world. The effective management of these diseases 

requires both an understanding of the multiple risk factors and the 

development of robust predictive strategies, as a variety of 

underlying pathologies may contribute to the decline of renal 

function over time. The importance of time series data in 

nephrology is increasingly recognized. Time series data play a 

critical role in tracking disease progression and implementing 

prevention strategies. In-depth analysis of time series data using 

advanced analytical techniques and artificial intelligence offers 

innovative approaches to the prediction and monitoring of kidney 

disease, potentially improving the quality of patient care and the 

efficiency of healthcare systems. This research combines two 

studies: one investigating environmental factors affecting renal 

function in primary glomerulonephritis, and another applying 

machine learning in acute kidney injury prediction, providing a 

comprehensive view of data-driven approaches in different types 

of kidney diseases. 

 

(1) Air quality and kidney health: Assessing the effects of PM10, 

PM2.5, CO, and NO2 on renal function in primary glomerulonephritis 
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Background: While extensive studies have elucidated the 

relationships between exposure to air pollution and chronic diseases, 

such as cardiovascular disorders and diabetes, the intricate effects 

on specific kidney diseases, notably primary glomerulonephritis 

(GN)—an immune-mediated kidney ailment—are less well 

understood. 

Considering the escalating incidence of GN and notable gap in 

research on its association with air quality, investigation is 

dedicated to examining the long-term effects of air pollutants on 

renal function in individuals diagnosed with primary GN. 

Methods: This retrospective cohort analysis was conducted on 

1394 primary GN patients who were diagnosed at Seoul National 

University Bundang Hospital and Seoul National University Hospital. 

Utilizing time-varying Cox regression and linear mixed models 

(LMM), we examined the effect of yearly average air pollution 

levels on renal function deterioration (RFD) and change in 

estimated glomerular filtration rate (eGFR). In this context, RFD is 

defined as sustained eGFR of less than 60 mL/min per 1.73 m2. 

Results: During a mean observation period of 5.1 years, 350 

participants developed RFD. Significantly, elevated interquartile 

range (IQR) levels of air pollutants—including PM10 (particles ≤10 

micrometers, HR 1.389, 95 % CI 1.2–1.606), PM2.5 (particles ≤2.5 

micrometers, HR 1.353, 95 % CI 1.162–1.575), CO (carbon 

monoxide, HR 1.264, 95 % CI 1.102–1.451), and NO2 (nitrogen 
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dioxide, HR 1.179, 95 % CI 1.021–1.361)—were significantly 

associated with an increased risk of RFD, after factoring in 

demographic and health variables. Moreover, exposure to PM10, 

PM2.5, and CO was associated with decreased eGFR. 

Conclusions: This study demonstrates a substantial link 

between air pollution exposure and renal function impairment in 

primary GN, accentuating the significance of environmental 

determinants in the pathology of immune-mediated kidney diseases. 

 

(2) Validation of an Acute Kidney Injury Prediction Model as a 

Clinical Decision Support System 

Background: Acute kidney injury (AKI) is a critical clinical 

condition that requires immediate intervention. We developed an 

artificial intelligence (AI) model called PRIME Solution to predict 

AKI and evaluated its ability to enhance clinicians’ predictions. 

Methods: The PRIME Solution was developed using 

convolutional neural networks with residual blocks on 183,221 

inpatient admissions from a tertiary hospital (2013−2017) and 

externally validated with 4,501 admissions at another tertiary 

hospital (2020−2021). To assess its application, we conducted a 

prospective evaluation using retrospectively collected data from 

100 patients at the latter hospital, including 15 AKI cases. AKI 

prediction performance was compared among specialists, physicians, 

and medical students, both with and without AI assistance. 
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Results: Without assistance, specialists demonstrated the 

highest accuracy (0.797), followed by medical students (0.619) and 

the PRIME Solution (0.568). AI assistance improved overall recall 

(61.0% to 74.0%) and F1 scores (38.7% to 42.0%), while reducing 

average review time (73.8 to 65.4 seconds; p<0.001). However, the 

impact varied across expertise levels. Specialists showed the 

greatest improvement (recall: 32.1% to 64.3%; F1: 36.4% to 

48.6%), whereas medical students’  performance improved but 

aligned more closely with the AI model. Additionally, the effect of 

AI assistance varied by prediction outcome, showing greater 

improvement in recall for cases predicted as AKI, and better 

precision, F1 score, and review time reduction (73.4 to 62.1 

seconds; p<0.001) for cases predicted as non-AKI. 

Conclusion: AKI predictions were enhanced by AI assistance, 

but the improvements varied according to the expertise of the user. 

 

In conclusion, these studies highlight the potential of data-

driven approaches in nephrology. The first study establishes a clear 

link between air pollution and chronic renal function deterioration, 

emphasizing the importance of considering environmental factors in 

long-term kidney disease management. The second demonstrates 

the value of AI in enhancing acute kidney injury prediction, 

showcasing the potential of advanced analytics in clinical practice 

for rapid intervention. These findings pave the way for more 
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targeted interventions and personalized care strategies in 

nephrology, potentially improving patient outcomes and quality of 

life across the spectrum of kidney diseases, from acute injuries to 

chronic conditions. 

 

Keyword : Chronic Kidney Disease, Acute Kidney Injury, Air 

Pollution, Machine Learning, Time Series Analysis, 

Glomerulonephritis 

Student Number : 2021-33712 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

Table of Contents 

 

Abstract ...................................................................................... i 

Table of Contents ..................................................................... vi 

List of Tables ........................................................................... ix 

List of Figures .......................................................................... xi 

Chapter 1. Introduction ............................................................ １ 

Chapter 2. Air quality and kidney health: Assessing the 

effects of PM10, PM2.5, CO, and NO2 on renal function in 

primary glomerulonephritis...................................................... ３ 

2.1. Study Background .................................................................... ３ 

2.2. Methods .................................................................................... ５ 

2.2.1. Ethical statement ............................................................... ５ 

2.2.2. Study participants .............................................................. ５ 

2.2.3. Air pollution exposure assessment .................................. ８ 

2.2.4. Outcome definition ............................................................. ９ 

2.2.5. Statistical analyses ......................................................... １０ 

2.3. Results ................................................................................... １４ 

2.3.1. Participant baseline characteristics and average air 

pollution exposure during follow-up ....................................... １４ 



 

vii 

2.3.2. Air pollutant exposure and the risk of RFD development １

７ 

2.3.3. Subgroup analysis of particular matter exposure and risk 

of RFD ........................................................................................ ２４ 

2.3.4. Linear mixed model analysis of eGFR trajectory in 

relation to air pollutant exposure ............................................. ２９ 

2.4. Discussions ............................................................................ ３１ 

2.5. Conclusions ............................................................................ ３９ 

Chapter 3. Validation of an Acute Kidney Injury Prediction 

Model as a Clinical Decision Support System ...................... ４０ 

3.1. Study Background ................................................................. ４０ 

3.2. Methods ................................................................................. ４２ 

3.2.1. Study Design ................................................................... ４２ 

3.2.2. Data Collection ................................................................ ４３ 

3.2.3. Definition of AKI ............................................................. ４４ 

3.2.4. Model Development ........................................................ ４４ 

3.2.5. Data Preparation and Evaluation .................................... ５２ 

3.2.6. Statistical Analysis ......................................................... ６０ 

3.3. Results ................................................................................... ６２ 

3.3.1. Comparison of the Performance Between Evaluators and 

AI Model (SET1) ...................................................................... ６２ 

3.3.2. Comparison of Prediction Performance Metrics According 

to AI Predictions (SET2) ......................................................... ６５ 



 

viii 

3.4. Discussion .............................................................................. ７８ 

Chapter 4. Conclusions ......................................................... ８６ 

Bibliography .......................................................................... ８８ 

Abstract in Korean ................................................................ ９６ 

 

 



 

ix 

List of Tables 

Table 1. Baseline characteristics and average of air pollution 

exposure during the follow-up period for the entire cohort and 

individuals with/without incident RFD. ..................................... １５ 

Table 2. Hazard ratios (95 % confidence interval) for Renal 

Function Deterioration (RFD) by yearly exposure to PM10, 

PM2.5, CO, and NO2, according to various adjustments. .......... １８ 

Table 3. Two-pollutant models showing hazard ratios for the risk 

of RFD associated with an interquartile change in each pollutant.

 ................................................................................................... ２０ 

Table 4. Extended time-varying covariate analysis of RFD due to 

1-year exposure to PM10, PM2.5, CO, and NO2 ....................... ２１ 

Table 5. Extended time-varying cox regression analysis for RFD 

with 2-year and 3-year exposures to PM10, PM2.5, CO, and NO2

 ................................................................................................... ２２ 

Table 6: Estimated impact on eGFR (95% Confidence Interval) per 

unit and per IQR increase in yearly exposure to PM10, PM2.5, CO, 

and NO2 ...................................................................................... ３０ 

Table 7. Categories and Descriptions of Features Used in the AKI 

Prediction Model ....................................................................... ４５ 

Table 8. Performance Metrics of the PRIME Solution Model on Test 

Set and External Validation Set at Selected Thresholds ........ ５０ 

Table 9. Baseline Characteristics and Outcomes of the Model 



 

x 

Evaluation Cohort Stratified by AKI Occurrence .................... ５３ 

Table 10: Detailed Interventions for AKI Prediction and 

Management ............................................................................... ５７ 

Table 11: Definitions and Equations of Performance Metrics ....... ６０ 

Table 12. Comparison of Prediction Performance Metrics for Acute 

Kidney Injury of Specialists, Physicians, and Medical Students 

With and Without AI Assistance ............................................... ６４ 

Table 13. Comparison of Prediction Performance Metrics between 

Specialists, Physicians, and Medical Students according to AI 

prediction results ...................................................................... ６７ 

Table 14. Individual and Group Analysis of Average Prediction 

Times for AKI with AI Assistance ........................................... ７１ 

Table 15: Mean Differences in Clinical Behaviors by AKI Prediction 

and Clinician Group ................................................................... ７４ 

 



 

xi 

List of Figures 

 

Figure 1. Diagram illustrating the selection process of cohort 

participants. .................................................................................. ７ 

Figure 2. Subgroup analysis of the association between increased 

particulate matter concentrations and risk of progression to 

Renal Function Deterioration (RFD). ....................................... ２５ 

Figure 3: Data Preprocessing Workflow for AKI Prediction Model. ４

７ 

Figure 4: Architecture of the AKI Prediction Model ..................... ４８ 

Figure 5. Receiver Operating Characteristic (ROC) curves of the 

PRIME solution model. .............................................................. ４９ 

Figure 6: Schematic representation of the Layer-wise Relevance 

Propagation (LRP) process in AKI prediction model. ............. ５１ 

Figure 7. Comparison of prediction metrics of specialists, physicians, 

medical students, and the PRIME Solution. ............................. ６３ 

Figure 8. Comparison of prediction performance metrics with and 

without the support of the PRIME Solution. ............................ ６６ 

Figure 9. Comparative analysis of the duration of the acute kidney 

injury (AKI) prediction: Evaluating the efficiency of the PRIME 

Solution’s assistance ................................................................. ７０ 

Figure 10. Changes in selected clinical actions: Impact of PRIME 

Solution’s assistance ................................................................. ７３ 



 

xii 

Figure 11. Comparison of match rates of the key predictive 

variables determined by the evaluator groups and the model. .. ７

７ 



 

１ 

Chapter 1. Introduction 

Kidney diseases encompass a diverse spectrum of conditions 

that significantly impact patient outcomes, ranging from acute 

kidney injury (AKI) requiring immediate intervention to various 

chronic conditions requiring long-term management [1,2]. The 

global burden of kidney diseases is substantial, affecting millions 

worldwide and presenting significant challenges to healthcare 

systems, particularly in regions with limited healthcare 

resources [3]. These conditions can be interrelated in their 

progression and management, with acute conditions potentially 

leading to chronic complications, and various underlying pathologies 

contributing to progressive kidney dysfunction over time [4]. 

The effective management of kidney diseases requires 

understanding multiple risk factors and developing robust prediction 

strategies. Environmental factors, particularly air pollution, have 

emerged as significant contributors to various chronic 

diseases [5,6], including kidney diseases, yet their impact on 

specific conditions such as primary glomerulonephritis (GN) 

remains understudied [7,8]. Meanwhile, in acute settings, despite 

numerous studies on AKI prediction and the potential of artificial 

intelligence approaches [9], the implementation of proactive 

management strategies remains limited, highlighting the need for 

more effective clinical decision support systems.  
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This research presents two complementary approaches to 

kidney disease prediction and monitoring through time series data 

analysis. The first study examines the effects of environmental 

factors, particularly air pollution, on renal function deterioration in 

patients with primary glomerulonephritis, utilizing longitudinal data 

to establish temporal relationships between exposure and outcomes. 

The second study develops and validates an artificial intelligence-

based approach for predicting acute kidney injury within a 48-hour 

window, utilizing temporal clinical data patterns to enhance 

predictive capabilities. 

While these studies address different types of kidney diseases, 

they share a common methodological foundation in their use of time 

series data analysis for disease prediction and monitoring. This 

unified approach to data analysis, applied across both acute and 

chronic conditions, provides new insights into prediction, monitoring, 

and prevention strategies in nephrology. Together, these studies 

contribute to our understanding of both environmental and clinical 

factors affecting kidney health, potentially improving the quality of 

patient care through enhanced prediction and monitoring capabilities. 

 

 

 



 

３ 

Chapter 2. Air quality and kidney health: 

Assessing the effects of PM10, PM2.5, CO, 

and NO2 on renal function in primary 

glomerulonephritis1 

 

2.1. Study Background 

Numerous investigations have scrutinized the associations 

between environmental exposures and health issues. Air pollution, 

among various environmental factors, has emerged as a significant 

environmental risk factor exacerbating chronic diseases, including 

cardiovascular diseases and diabetes [5,6]. Research has disclosed 

that pollutants, particularly fine particles, aggravate these diseases 

mainly through inflammatory responses, oxidative stress, and DNA 

damage [11]. Furthermore, substantial evidence delineates how air 

pollutants contribute to the risk of kidney diseases, such as chronic 

kidney disease (CKD) and End-Stage Renal Disease (ESRD) [7,8]. 

 

1 This chapter is based on previously published paper, [10] Yi J, Kim 

SH, Lee H, et al. Air quality and kidney health: Assessing the effects of 

pm(10), pm(2.5), co, and no(2) on renal function in primary 

glomerulonephritis. Ecotoxicol Environ Saf 2024;281:116593. 
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While prevailing studies have primarily concentrated on CKD 

incidence among the general populace and the progression to ESRD 

among CKD patients, a research void persistently exists concerning 

various kidney diseases, each characterized by its unique pathology. 

Glomerulonephritis (GN), marked by the inflammation of the 

kidneys’ glomeruli, or filtering units, presents as one such 

disease [12]. GN may emerge as primary, often idiopathically linked 

to anomalous immune responses, or as secondary, associated with 

autoimmune diseases, infections, cancers, or metabolic disorders. 

Research trends reveal an alarmingly rising GN burden, with a 77% 

increase in incidence, an 81% rise in prevalence, and a doubling of 

the mortality rate from 1990 to 2019 [13]. GN pathogenesis 

encompasses abnormal immune reactions inflicting damage on 

glomerular endothelial and epithelial cells, vascular tissues, and 

podocytes. Airborne pollutants, once internalized, can trigger 

diverse immune mechanisms, culminating in macrophage activation 

and subsequent damage to endothelial and epithelial cells. It is 

hypothesized that these pathogenetic mechanisms can interact and 

exacerbate each other, aggravating glomerular injuries [14,15]. 

Although inquiries into air pollution’s effects on autoimmune 

diseases, including systemic lupus erythematosus (SLE) and lupus 

nephritis, exist  [16,17], scholarly attention towards the impacts of 

air pollutants on primary GN, which manifests more prevalently than 

lupus nephritis, remains scant. Noteworthily, the preceding body of 
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research on air pollutants and primary GN has predominantly 

focused on assessing GN incidence, with fewer attempts to 

elucidate the implications of air pollution on renal function among 

primary GN patients [18,19]. Our study endeavors to bridge this 

gap by evaluating the repercussions of air pollutant exposure on 

renal function in individuals with primary GN.  

 

2.2. Methods 

2.2.1. Ethical statement 

Aligned with the Declaration of Helsinki principles, this study 

received approvals from the institutional review boards (IRB) of 

Seoul National University Bundang Hospital (B-2101-658-104) 

and Seoul National University Hospital (J-2102-080-1197). The 

IRBs waived the need for acquiring written informed consents from 

participants, considering the study’s retrospective nature and the 

minimal risk posed to participants.  

2.2.2. Study participants  

Data for this investigation were derived from two major clinical 

centers: Seoul National University Bundang Hospital and Seoul 

National University Hospital, encompassing detailed records of 

3,202 individuals diagnosed with primary GN from 1987 to 2018. 

This cohort included patients with focal segmental 

glomerulosclerosis (FSGS), immunoglobulin A nephropathy (IgAN), 

minimal change disease (MCD), membranous nephropathy (MN), 
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and membranoproliferative glomerulonephritis (MPGN). Primary GN 

was confirmed through clinical and pathological assessment, and 

secondary forms of GN were excluded. Diagnostic assessments 

utilizing light microscopy (LM), immunofluorescence (IF), and 

electron microscopy (EM) were conducted, with renal pathologists 

at each institution affirming the diagnoses of primary GN among 

others. Clinical and demographic data, including age, sex, body mass 

index (BMI), smoking status, alcohol consumption, pre-existing 

medical conditions, and laboratory outcomes, were meticulously 

extracted from hospital information systems, reflecting the 

information accessible throughout the follow-up period post-

biopsy for patient evaluation. 

Exclusions were applied to: 140 participants due to the 

unavailable air pollution data; 120 individuals under 18 years of age; 

926 patients experiencing renal function deterioration (RFD) before 

and within 3 months of enrollment; and 26 subjects who initiated 

dialysis, underwent a kidney transplantation, or succumbed before 

and within 3 months post-enrolment. Additionally, 131 patients 

were excluded due to their follow-up ceasing within 3 months of 

enrollment, alongside 465 patients lacking data on crucial covariates 

such as smoking, drinking, estimated Glomerular Filtration Rate 

(eGFR), urine protein creatinine ratio (UPCR), and BMI. These 

exclusions aimed to mitigate the influence of early acute 

fluctuations, facilitating a more accurate longitudinal analysis of air 
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pollution’s chronic impact on renal function. Subsequently, the 

refined cohort for our analysis constituted 1,394 participants 

(Figure 1). 

 

Figure 1. Diagram illustrating the selection process of cohort 

participants. 

 

Primary GN encompasses Focal Segmental Glomerulosclerosis (FSGS), 

Immunoglobulin A Nephropathy (IgAN), Minimal Change Disease (MCD), 

Membranous Nephropathy (MN), and Membranoproliferative Glomerulonephritis 

(MPGN). RFD denotes Renal Function Deterioration. 
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2.2.3. Air pollution exposure assessment 

We utilized air pollution data at a 1 km2  resolution, in alignment 

with the methodology of [20], focusing on ground-level 

concentrations of NO2, CO, PM10, and PM2.5 throughout South Korea 

from 2002 to 2020. The employed methodology harnessed machine 

learning algorithms, coupled with Inverse Distance Weighting (IDW) 

to interpolate air pollution data from the Air Korea database, 

selecting only those stations maintaining consistent records for a 

minimum of nine months per year. This approach was enhanced 

through the integration of satellite data, details concerning land-use 

such as vegetation indexes and greenness measures, alongside 

socioeconomic parameters sourced from the Google Earth Engine 

and the Socioeconomic Data and Applications Center. These 

multifaceted predictors facilitated a meticulous and high-resolution 

evaluation of pollution levels [20]. 

For each participant, we estimated the 1-year average levels of 

PM10, PM2.5, CO, and NO2 based on their residential addresses, using 

these pre-calculated monthly air pollution data from the 

surrounding monitoring stations. In the Cox regression analysis, 

pollutant levels were updated every 12 months, commencing with 

the participant's month of entry into the study. In cases where a 

censoring event preceded the completion of the forthcoming 12-

month interval, the average was calculated from the 12 months 

leading up to the event. Conversely, for the linear mixed model 
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(LMM) analysis, the air pollutant concentrations for the preceding 

12 months were recalculated each time an eGFR measurement was 

taken, with monthly averages used for the eGFR values. This 

strategy ensured a tailored exposure assessment for each 

participant from the point of their inclusion. The monitoring span 

extended until the earliest of the following occurrences: the onset 

of RFD, commencement of dialysis or kidney transplantation, death, 

the conclusion of the 10-year observational period, or the end of 

our study on December 31, 2020. 

 

2.2.4. Outcome definition 

The primary outcome examined in this study was defined as the 

occurrence of renal function deterioration (RFD), tailored 

specifically to the clinical context of GN. RFD was determined by a 

prolonged decrement in the estimated glomerular filtration rate 

(eGFR) falling below 60 mL/min per 1.73 m2 for a minimum duration 

of three consecutive months. Within this timeframe, at least two 

measurements of eGFR less than 60 were a prerequisite, with none 

exceeding this threshold, all recorded during outpatient visits. While 

this criterion is typically associated with chronic kidney disease 

(CKD), in the context of GN, which inherently involves renal 

impairment, we employed the designation RFD to precisely describe 

the progression of renal function decline. The eGFR was calculated 

utilizing the formula provided by the Chronic Kidney Disease 
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Epidemiology Collaboration (CKD−EPI): 

GFR = 141 × min(Scr/κ, 1)α × max(Scr/κ, 1)-1.209 × 0.993Age × 

1.018 [if female]  

where Scr represents serum creatinine,  is 0.7 for females 

and 0.9 for males, and  is -0.329 for females and -0.411 for 

males. The ‘min’ function indicates the lesser value between Scr/  

and 1, while ‘max’ refers to the greater value between Scr/  and 

1  [21]. A patient meeting and sustaining this eGFR standard for 

the stipulated period was classified as having experienced RFD. 

For linear mixed model analyses, the continuous eGFR values 

were employed directly as the outcome variable. The objective was 

to rigorously assess the influence of air pollution on the longitudinal 

progression of eGFR values. 

 

2.2.5. Statistical analyses  

The baseline characteristics of our study participants, 

encompassing demographic, clinical, and laboratory parameters, 

were comprehensively summarized. Continuous variables were 

presented in terms of their mean values and standard deviations, 

while categorical variables were expressed as counts and 

percentages. We evaluated the statistical significance of differences 

using t-tests and chi-squared tests, employing R statistical 

software (version 4.1.3) for all analyses. 

To explore the relationship between the incidence of RFD and 
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exposure to various air pollutants (PM10, PM2.5, CO, NO2), time-

varying Cox regression models were utilized. The focal exposure 

variable was conceptualized as the 1-year average concentration of 

each pollutant, treated as a time-varying variable within the study’s 

framework. We examined three distinct models: Model 1, which 

acted as a crude model, focusing solely on each air pollutant 

individually; Model 2 incorporated demographic variables such as 

participants’ sex and age at the start of the study; and Model 3 

extensively adjusted for additional factors including pre-existing 

health conditions like diabetes, hypertension, and cancer, alongside 

baseline laboratory measurements such as eGFR and UPCR. This 

comprehensive model also considered lifestyle factors—alcohol 

consumption and smoking status (current or past) and other 

variables including GN types (FSGS, IGAN, MCD, MN, MPGN), BMI, 

and the administration of immunosuppressive agents (ISA) or 

angiotensin receptor blockers (ARB) within one year following 

enrollment. Seasonality was incorporated as a categorical variable, 

establishing spring (March to May) as the reference period, and 

categorizing the remaining seasons accordingly to account for 

seasonal fluctuations in air pollutant concentrations. We examined 

the proportional hazards assumption for control variables through 

Schoenfeld residuals analysis, log-transforming baseline eGFR 

values to align with this assumption, and stratifying the elaborately 

adjusted Model 3 by ISA usage.  
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To discern the individual and combined effects of air pollutants, 

we implemented two-pollutant models, facilitating an assessment of 

each pollutant’s impact on RFD risk when adjusted for the presence 

of another pollutant. Subgroup analyses were conducted to identify 

how certain factors might alter the association between RFD and air 

pollution. These factors encompassed age, sex, diabetes status, 

hypertension, cancer, GN types, and BMI categorizations. In 

subgroups differentiated by age, sex, hypertension, and BMI, 

adjustments were made for all control variables in the fully adjusted 

model minus the variables defining the subgroups. For diabetes, 

cancer, and GN types, adjustments were confined to age and sex, as 

delineated in Model 2, owing to the limited number of observations. 

Multiplicative interaction terms were introduced for each factor 

alongside pollutants in separate models to evaluate potential 

modification effects, with interactions considered statistically 

significant at a p-value under 0.05 using the Wald test. 

To enhance the robustness of our findings, further analyses 

were conducted to account for the time-varying nature of critical 

covariates in the Cox regression model, inclusive of age, drinking 

status, smoking habits, BMI, and the use of ISA and ARB, thus 

capturing their evolving impacts on the relationship between air 

pollution and RFD. Diseases such as diabetes, hypertension, and 

cancer were treated as static variables to maintain consistency in 

diagnostic criteria and data availability throughout the study. 
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Additionally, systolic blood pressure (SBP) was incorporated as a 

time-varying covariate to thoroughly evaluate blood pressure 

fluctuations over the study period. Sensitivity analyses employing 

extended exposure durations of 2 and 3 years for each pollutant 

were conducted to validate our findings’ consistency across longer 

exposure windows. 

The linear mixed model (LMM) approach was employed to 

investigate the trajectory of outpatient-measured eGFR values in 

relation to air pollutant concentrations (PM10, PM2.5, CO, NO2). By 

treating individuals as random effects, we accommodated within-

subject variability, allowing for the modeling of both random 

intercepts and slopes to acknowledge variations in individuals’ 

baseline eGFR and change in eGFR values over time. The primary 

exposure variable, represented by the 1-year average 

concentration of each air pollutant, was dynamically computed 

based on data preceding the month of eGFR measurement. The 

LMM’s data set consisted of these monthly averages, derived from 

patients’ hospital visit records.  

Three modeling approaches were pursued. Model 1 integrated 

time and pollutant averages as fixed effects, with individuals as 

random effects; Model 2 extended this by including age and sex; 

and Model 3 embraced seasonality alongside various diseases and 

lifestyle variables identified at enrollment, mirroring the structure 

of Model 3 in the time-varying Cox regression framework. To 
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ensure the modeling process’s numerical stability, continuous 

variables such as age, time, baseline eGFR, and BMI were 

standardized by centering around the mean and normalizing by 

standard deviation prior to their incorporation into the models. 

 

2.3. Results 

2.3.1. Participant baseline characteristics and average air 

pollution exposure during follow-up 

Table 1 presents the initial characteristics and mean yearly 

exposure to air pollutants across the entire cohort, segmented 

according to the incidence of RFD. The study encompassed 1,394 

participants, with 350 experiencing RFD throughout an average 

follow-up duration of 5.1 years. The interval between eGFR 

assessments averaged 4.1 months (SD 5.21), with a median of 3.04 

months. Individuals who developed RFD were, on average, older at 

baseline compared to those who did not develop RFD (49.3 vs. 40.4 

years, p < 0.001), with no significant disparity in sex distribution 

between the two categories. Prevalence rates of diabetes and 

hypertension were considerably higher in the RFD group, 

accompanied by lower baseline eGFR measures (75.5 vs. 97.1 

mL/min per 1.73 m2, p < 0.001). Among GN types, IgAN was the 

most common, representing 56% of the overall cohort. An elevated 

proportion of subjects with RFD had FSGS and MPGN in comparison 
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to those without RFD. The follow-up phase marked consistently 

higher exposures to PM10, PM2.5, CO, and NO2 among the RFD group 

as opposed to their counterparts, with all differences showing 

statistical significance (all p-values < 0.001).  

 

Table 1. Baseline characteristics and average of air pollution 

exposure during the follow-up period for the entire cohort and 

individuals with/without incident RFD. 

Characteristics Total 
Without 

incident RFD 

With  

incident RFD 
p-value* 

Subjects, n 1,394 1,044 350  

Age at enrollment, mean 

(SD) 
42.6 (15.3) 40.4 (14.7) 49.3 (15.0) < 0.001 

Male, n (%) 715 (51%) 533 (51%) 182 (52%) 0.759 

Diabetes, n (%) 131 (9%) 79 (8%) 52 (15%) < 0.001 

Hypertension, n (%) 690 (49%) 467 (45%) 223 (64%) < 0.001 

Cancer, n (%) 48 (3%) 29 (3%) 19 (5%) 0.019 

eGFR at enrollment, 

mean (SD) 
91.7 (22.4) 97.1 (21.2) 75.5 (17.8) < 0.001 

UPCR at enrollment, 

mean (SD) 
3287.4 (4882.0) 

3216.2 

(5071.3) 

3499.8 

(4267.6) 
0.347 

Type of GN, n (%)    < 0.001 

FSGS 120 (9%) 75 (7%) 45 (13%)  

IGAN 774 (56%) 585 (56%) 189 (54%)  

MCD 177 (13%) 149 (14%) 28 (8%)  

MN 273 (20%) 205 (20%) 68 (19%)  

MPGN 50 (4%) 30 (3%) 20 (6%)  
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Characteristics Total 
Without 

incident RFD 

With  

incident RFD 
p-value* 

Drinking, n (%) 473 (34%) 371 (36%) 102 (29%) 0.029 

Smoking, n (%)    0.009 

Current smoker 177 (13%) 116 (11%) 61 (17%)  

Former smoker 152 (11%) 117 (11%) 35 (10%)  

Body mass index (BMI), 

mean (SD) 
24.1 (3.6) 23.9 (3.5) 24.8 (4.0) < 0.001 

Immunosuppressant 

usage within 1 year from 

enrollment, n (%) 

490 (35%) 355 (34%) 135 (39%) 0.121 

ARB usage within 1 year 

from enrollment, n (%) 
1033 (74%) 731 (70%) 302 (86%) < 0.001 

Concentration of PM10, 

µg/m3, mean (SD) 
48.0 (7.3) 47.5 (7.1) 50.8 (7.4) < 0.001 

Concentration of PM2.5, 

µg/m3, mean (SD) 
25.9 (3.4) 25.7 (3.3) 27.0 (3.3) < 0.001 

Concentration of CO, 

µg/kg, mean (SD) 
587.4 (35.7) 585.7 (35.2) 598.0 (36.9) < 0.001 

Concentration of NO2, 

µg/kg, mean (SD) 
25.4 (4.8) 25.3 (4.9) 26.4 (4.3) < 0.001 

Abbreviations: RFD, renal function deterioration; SD, standard deviation; eGFR, 

estimated Glomerular Filtration Rate; UPCR, urine protein creatinine ratio; PM10, 

particulate matter ≤ 10 μm in diameter; PM2.5, particulate matter ≤ 2.5 μm in 

diameter; CO, carbon monoxide; NO2, nitrogen dioxide; FSGS, Focal segmental 

glomerulosclerosis; IgAN, Immunoglobulin A Nephropathy; MCD, Minimal Change 

Disease; MN, Membranous Nephropathy, MPGN: Membranoproliferative 

glomerulonephritis; ARB, Angiotensin receptor blocker. 

*p-values for difference of no RFD and RFD groups were obtained from t-test 

and Pearson’s Chi-squared test. 
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2.3.2. Air pollutant exposure and the risk of RFD development 

Our examination of the influence of air pollutant levels on RFD 

risk, as illustrated in Table 2, reveals significant findings from Cox 

regression analyses. The analysis, spanning three models, 

consistently identified PM10, PM2.5, and CO as factors significantly 

elevating the hazard ratios (HRs) for RFD, with more pronounced 

HRs observed in the adjusted models compared to the unadjusted 

Model 1. Specifically, the fully adjusted Model 3 demonstrates that 

PM10 is linked to an HR of 1.389 (95% CI 1.12−1.606), signifying a 

marked increase in RFD risk per interquartile range (IQR) 

increment of 9.3 µg/m³. Furthermore, in Model 3, PM2.5 and CO 

present HRs of 1.353 (95% CI 1.162−1.575) and 1.264 (95% CI 

1.102−1.451) respectively, indicating significant RFD risks for IQR 

increments of 4.4 µg/m³ and 45.8 µg/kg. NO2 demonstrated 

statistical significance only in Models 2 and 3, with Model 2 

reporting an HR of 1.191 (95% CI 1.031−1.374) and Model 3 

reporting an HR of 1.174 (95% CI 1.021−1.361) for an IQR increase 

of 6.3 µg/kg. 
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Table 2. Hazard ratios (95 % confidence interval) for Renal 

Function Deterioration (RFD) by yearly exposure to PM10, PM2.5, 

CO, and NO2, according to various adjustments. 

Exposure HR(CI) per 1 unitb HR(CI) per IQRc 

Model 1 (unadjusted) 

PM10 1.024(1.009, 1.040)** 1.252(1.090, 1.438)** 

PM2.5 1.049(1.015, 1.083)** 1.234(1.068, 1.425)** 

CO 1.004(1.001, 1.007)* 1.198(1.044, 1.374)* 

NO2 1.015(0.992, 1.038) 1.098(0.953, 1.265) 

Model 2 (adjusted for age and sex) 

PM10 1.036(1.021, 1.052)*** 1.390(1.210, 1.597)*** 

PM2.5 1.067(1.033, 1.103)*** 1.334(1.155, 1.541)*** 

CO 1.006(1.003, 1.009)*** 1.314(1.145, 1.507)*** 

NO2 1.028(1.005, 1.052)* 1.191(1.031, 1.374)* 

Model 3 (fully adjusted)a 

PM10 1.036(1.020, 1.052)*** 1.389(1.200, 1.606)*** 

PM2.5 1.071(1.034, 1.108)*** 1.353(1.162, 1.575)*** 

CO 1.005(1.002, 1.008)** 1.264(1.102, 1.451)*** 

NO2 1.027(1.003, 1.050)* 1.179(1.021, 1.361)* 

Abbreviations: HR, Hazard Ratio; CI, Confidence Interval; IQR, interquartile 

range; PM10, particulate matter ≤ 10 μm in diameter; PM2.5, particulate matter ≤ 

2.5 μm in diameter; CO, carbon monoxide; NO2, nitrogen dioxide. 
a Adjusted for age, sex, season, diabetes, hypertension, cancer, eGFR(CKD−

EPI) at enrollment, UPCR at enrollment, GN type (FSGS, IgAN, MCD, MN, MPGN), 

drinking, smoking, BMI, usage of ARBs within 1 year from the enrollment, stratified 

by usage of immunosuppressants within 1 year from the enrollment. 
b 1 unit: For PM10, PM2.5, CO, and NO, the unit is µg/m³, µg/m³, µg/kg, and 

µg/kg respectively. 
c IQR: For PM10, PM2.5, CO, and NO2, the IQR is 9.3 µg/m³, 4.4 µg/m³, 45.8 

µg/kg, and 6.3 µg/kg respectively. 

*p < 0.05; ** p < 0.01; *** p < 0.001. 
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In analyses that included two pollutants based on adjustments 

from Model 3, the investigation into the combined effects of air 

pollution on RFD risk indicated that both PM10 and PM2.5 continued 

to exhibit a substantial influence. Specifically, after adjusting for CO, 

the HRs for PM10 and PM2.5 per IQR increase remained significantly 

elevated at 1.312 (95% CI: 1.119–1.538) and 1.287 (95% CI: 

1.097–1.51), respectively. Likewise, with adjustments accounting 

for NO2, HRs for PM10 and PM2.5 were 1.359 (95% CI: 1.168–1.581) 

and 1.366 (95% CI: 1.169–1.597), respectively, reinforcing their 

significant impact on RFD risk even in the presence of other air 

pollutants. Conversely, with adjustments for PM2.5, CO and NO2 

demonstrated a positive association with RFD risk with HRs of 

1.186 (95% CI: 1.032–1.364) and 1.183 (95% CI: 1.025–1.365), 

respectively. However, upon adjusting for PM10, the links for CO 

and NO2 failed to achieve statistical significance, indicating a 

nuanced interplay between these pollutants and RFD risk, as 

detailed in Table 3. 

.
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Table 3. Two-pollutant models showing hazard ratios for the risk of RFD associated with an interquartile 

change in each pollutant. 

Pollutant Further adjusted for PM10 Further adjusted for PM2.5 Further adjusted for CO Further adjusted for NO2 

PM10 (HR, 95% CI) - - 1.312(1.119, 1.538)*** 1.359(1.168, 1.581)*** 

PM2.5 (HR, 95% CI) - - 1.287(1.097, 1.510)** 1.366(1.169, 1.597)*** 

CO (HR, 95% CI) 1.143(0.986, 1.324) 1.186(1.032, 1.364)* - - 

NO2 (HR, 95% CI) 1.092(0.942, 1.264) 1.183(1.025, 1.365)* - - 

Abbreviations: HR, Hazard Ratio; CI, Confidence Interval; IQR, interquartile range; PM10, particulate matter ≤ 10 μm in diameter; 

PM2.5, particulate matter ≤ 2.5 μm in diameter; CO, carbon monoxide; NO2, nitrogen dioxide. All models in this table are based on 

Model 3 adjustments from the previous analysis. Pollutants with a correlation coefficient of 0.7 or above were excluded to avoid 

multicollinearity. Correlations among pollutants were as follows: PM10 and PM2.5, r=0.856; PM10 and CO, r=0.407; PM10 and NO2, 

r=0.277; PM2.5 and CO, r=0.296; PM2.5 and NO2, r=0.07; CO and NO2, r=0.711. *p < 0.05; ** p < 0.01; *** p < 0.001.
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The outcomes from models that included time-varying 

covariates like age, alcohol consumption, smoking status, BMI, 

intake of ISA and ARB, and SBP, aligned with those derived from 

Model 3 and are elaborated in Table 4. Furthermore, the sensitivity 

analyses that extended exposure durations to 2 and 3 years are 

documented in Table 5. 

 

Table 4. Extended time-varying covariate analysis of RFD due to 

1-year exposure to PM10, PM2.5, CO, and NO2  

Exposure HR(CI) per 1 unita HR(CI) per IQRb 

PM10 1.039(1.023, 1.055)*** 1.427(1.234, 1.649)*** 

PM2.5 1.080(1.043, 1.118)*** 1.404(1.206, 1.636)*** 

CO 1.006(1.003, 1.009)*** 1.305(1.135, 1.501)*** 

NO2 1.027(1.004, 1.051)* 1.185(1.026, 1.368)* 

Abbreviations: HR, Hazard Ratio; CI, Confidence Interval; IQR, interquartile 

range; PM10, particulate matter ≤ 10 μm in diameter; PM2.5, particulate matter ≤ 2.5 

μm in diameter; CO, carbon monoxide; NO2, nitrogen dioxide. 

The model builds upon Model 3 by incorporating updates to key covariates 

such as age, drinking status, smoking status, BMI, and ISA or ARB usage, 

transitioning them to time-varying formats to capture dynamic changes over time. 

Additionally, Systolic blood pressure (SBP) has been newly introduced as another 

time-varying covariate. 
a 1 unit: For PM10, PM2.5, CO, and NO2, the unit is µg/m³, µg/m³, µg/kg, and 

µg/kg respectively. 
b IQR: For PM10, PM2.5, CO, and NO2, the IQR is 9.3 µg/m³, 4.4 µg/m³, 45.8 

µg/kg, and 6.3 µg/kg respectively. 

*p < 0.05; ** p < 0.01; *** p < 0.001. 
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Table 5. Extended time-varying cox regression analysis for RFD 

with 2-year and 3-year exposures to PM10, PM2.5, CO, and NO2 

Exposure 

2-year exposure 3-year exposure 

HR(CI) per 1 

unitb 

HR(CI) per 

IQRc 

HR(CI) per 1 

unitb 

HR(CI) per 

IQRc 

Model 1 (unadjusted) 

PM10 
1.029(1.013, 

1.045)*** 

1.300(1.123, 

1.505)*** 

1.017(1.000, 

1.035)* 

1.174(1.004, 

1.374)* 

PM2.5 
1.057(1.021, 

1.094)** 

1.277(1.094, 

1.490)** 

1.044(1.006, 

1.083)* 

1.210(1.028, 

1.426)* 

CO 
1.004(1.001, 

1.007)* 

1.187(1.033, 

1.363)* 

1.003(1.000, 

1.006) 

1.132(0.983, 

1.304) 

NO2 
1.014(0.991, 

1.037) 

1.090(0.946, 

1.256) 

1.010(0.988, 

1.034) 

1.066(0.925, 

1.230) 

Model 2 (adjusted for age and sex) 

PM10 
1.042(1.025, 

1.058)*** 

1.461(1.262, 

1.692)*** 

1.032(1.014, 

1.049)*** 

1.335(1.139, 

1.565)*** 

PM2.5 
1.077(1.040, 

1.116)*** 

1.390(1.191, 

1.622)*** 

1.065(1.026, 

1.105)*** 

1.320(1.120, 

1.556)*** 

CO 
1.006(1.003, 

1.009)*** 

1.301(1.133, 

1.494)*** 

1.005(1.002, 

1.008)** 

1.242(1.079, 

1.430)** 

NO2 
1.026(1.003, 

1.050)* 

1.178(1.020, 

1.360)* 

1.022(0.999, 

1.046) 

1.149(0.995, 

1.328) 

Model 3 (fully adjusted)a 

PM10 
1.042(1.025, 

1.059)*** 

1.464(1.255, 

1.708)*** 

1.031(1.013, 

1.050)*** 

1.330(1.126, 

1.57)*** 

PM2.5 
1.083(1.043, 

1.124)*** 

1.421(1.206, 

1.674)*** 

1.070(1.029, 

1.113)*** 

1.349(1.133, 

1.605)*** 
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Exposure 

2-year exposure 3-year exposure 

HR(CI) per 1 

unitb 

HR(CI) per 

IQRc 

HR(CI) per 1 

unitb 

HR(CI) per 

IQRc 

CO 
1.005(1.002, 

1.008)** 

1.249(1.087, 

1.434)** 

1.004(1.001, 

1.007)* 

1.193(1.036, 

1.374)* 

NO2 
1.025(1.002, 

1.049)* 

1.168(1.012, 

1.349)* 

1.022(0.998, 

1.045) 

1.144(0.989, 

1.322) 

Abbreviations: HR, Hazard Ratio; CI, Confidence Interval; IQR, interquartile 

range; PM10, particulate matter ≤ 10 μm in diameter; PM2.5, particulate matter ≤ 2.5 

μm in diameter; CO, carbon monoxide; NO2, nitrogen dioxide.  

While the analysis of 2-year exposure covered all 1,394 participants, identical 

in size to the cohort analyzed for the 1-year exposure, the analysis of the 3-year 

exposure included only 1,372 participants owing to the constrained follow-up data 

available prior to 2002. 
a Adjusted for age, sex, season, diabetes, hypertension, cancer, eGFR 

(CKD−EPI) at enrollment, UPCR at enrollment, GN type (FSGS, IgAN, MCD, MN, 

MPGN), drinking, smoking, BMI, usage of ARBs within 1 year from the enrollment, 

stratified by usage of immunosuppressants within 1 year from the enrollment. 
b 1 unit: For PM10, PM2.5, CO, and NO2, the unit is µg/m³, µg/m³, µg/kg, and 

µg/kg respectively. 
c IQR: For PM10, PM2.5, CO, and NO2, the IQR is 9.3 µg/m³, 4.4 µg/m³, 45.8 

µg/kg, and 6.3 µg/kg respectively. 

*p < 0.05; ** p < 0.01; *** p < 0.001. 
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2.3.3. Subgroup analysis of particular matter exposure and 

risk of RFD 

Our subgroup analysis indicated that the increased risk of RFD 

associated with elevated levels of air pollutants was largely 

consistent across most subgroups, underscoring an overarching 

trend of heightened risk. Older individuals (≥ 60 years) exhibited 

higher HRs for PM10 at 1.5 (95% CI:f 1.13−1.99) and for CO at 1.4 

(95% CI: 1.05–1.87) compared to younger counterparts, though the 

interaction p-values did not reveal any significant age-related 

modification effect on the association between air pollutants and 

RFD risk.  Males demonstrated marginally higher HRs for all 

pollutants compared to females, with HRs for PM10 and PM2.5 at 1.44 

(95% CI: 1.18–1.76) and 1.41 (95% CI: 1.14–1.73), respectively, 

albeit without significant interaction p-values. Hypertensive 

participants showed a distinctly higher HR for PM10 at 1.51 (95% 

CI: 1.26–1.81), with a significant interaction effect (p=0.034), 

suggesting hypertension could modulate the impact of PM10 on RFD. 

Types of GN did not exhibit consistent patterns across pollutants, 

and interaction effects remained statistically insignificant. An 

increased BMI (≥ 25) correlated with higher HRs for all pollutants, 

evidenced by an HR of 1.5 (95% CI: 1.2–1.87) for PM10, although 

without significant interaction effects (Figure 2). 



 

２５ 

Figure 2. Subgroup analysis of the association between increased 

particulate matter concentrations and risk of progression to Renal 

Function Deterioration (RFD).  
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Impact of a 1 IQR increase in (A) PM10 (particles ≤10 micrometers), (B) PM2.5 

(particles ≤2.5 micrometers), (C) CO (carbon monoxide), and (D) NO2 (nitrogen 

dioxide).  
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2.3.4. Linear mixed model analysis of eGFR trajectory in 

relation to air pollutant exposure 

We conducted an LMM analysis to evaluate the relationship 

between eGFR and levels of air pollutants averaged over the 12 

months preceding each eGFR assessment. The results revealed that 

elevations in PM10 and PM2.5 concentration were significantly 

associated with reductions in eGFR across models 2 and 3. 

Specifically, in Model 3, an IQR increase in PM10 (9.3 µg/m³) 

corresponded to a yearly decline of −0.653 units in eGFR (95% CI: 

−1.001, −0.317, p < 0.001). A similar pattern was observed for 

PM2.5, though such associations were absent in the unadjusted 

Model 1. CO showed a consistently negative association with eGFR 

across all examined models, with Model 3 indicating a significant 

decline of −2.382 units in eGFR (95% CI: −2.896, −1.868, p < 

0.001). Conversely, NO2 did not exhibit a statistically significant 

relationship with eGFR in any of the models, with Model 3 showing 

an estimate of −0.533 and a 95% CI ranging from −1.139 to 0.074 

(Table 6).  
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Table 6: Estimated impact on eGFR (95% Confidence Interval) per 

unit and per IQR increase in yearly exposure to PM10, PM2.5, CO, 

and NO2  

Exposure Estimate(CI) per 1 unitb Estimate(CI) per IQRc 

Model 1 (unadjusted) 

PM10 -0.025(-0.065, 0.014) -0.234(-0.601, 0.132) 

PM2.5 -0.064(-0.150, 0.022) -0.282(-0.663, 0.099) 

CO -0.059(-0.073, -0.045)*** -2.714(-3.349, -2.078)*** 

NO2 0.044(-0.088, 0.177) 0.278(-0.555, 1.110) 

Model 2 (adjusted for age and sex) 

PM10 -0.051(-0.090, -0.012)** -0.477(-0.839, -0.115)** 

PM2.5 -0.103(-0.189, -0.018)* -0.458(-0.834, -0.081)* 

CO -0.068(-0.082, -0.055)*** -3.130(-3.735, -2.525)*** 

NO2 -0.080(-0.203, 0.043) -0.503(-1.277, 0.270) 

Model 3 (fully adjusted)a 

PM10 -0.070(-0.107, -0.033)*** -0.653(-0.995, -0.311)*** 

PM2.5 -0.119(-0.200, -0.039)** -0.529(-0.886, -0.171)** 

CO -0.052(-0.063, -0.041)*** -2.382(-2.896, -1.868)*** 

NO2 -0.085(-0.181, 0.012) -0.533(-1.139, 0.074) 

Abbreviations: eGFR, estimated Glomerular Filtration Rate; CI, Confidence 

Interval; IQR, interquartile range; PM10, particulate matter ≤ 10 μm in diameter; 

PM2.5, particulate matter ≤ 2.5 μm in diameter; CO, carbon monoxide; NO2, 

nitrogen dioxide. 
a Adjusted for age, sex, season, diabetes, hypertension, cancer, eGFR (CKD−

EPI) at enrollment, UPCR at enrollment, GN type (FSGS, IgAN, MCD, MN, MPGN), 

drinking, smoking, BMI, usage of ARBs within 1 year from the enrollment, usage of 

immunosuppressants within 1 year from the enrollment. Time is included as a 
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random effect in all models. 
b 1 unit: For PM10, PM2.5, CO, and NO2, the unit is µg/m³, µg/m³, µg/kg, and 

µg/kg respectively. 
c IQR: For PM10, PM2.5, CO, and NO2, the IQR is 9.3 µg/m³, 4.4 µg/m³, 45.8 

µg/kg, and 6.3 µg/kg respectively. 

*p < 0.05; ** p < 0.01; *** p < 0.001. 

 

2.4. Discussions 

In our study, we meticulously examined the effects of air 

pollution on renal function by evaluating two primary outcomes: the 

risk of developing RFD and the decline in eGFR among 1,394 

patients diagnosed with primary GN. Our findings reveal significant 

associations between increased concentrations of PM10, PM2.5, CO, 

and NO2 and a heightened risk of RFD, as determined by a fully 

adjusted Cox regression model. Furthermore, our LMM analysis 

underscored the statistically significant impact of PM10, PM2.5, and 

CO on eGFR decline. Conversely, the effect of NO2 on eGFR 

reduction was ambiguous; failing to reach statistical significance in 

our LMM assessments, albeit one model suggested a subtle trend 

toward marginal significance. 

The significant effects of PM10 and PM2.5 on renal function, 

determined through our analysis, align with extant research 

outlining the harmful repercussions of particulate matter on the 

incidence of CKD, ESRD, or CKD advancement in the broader 

populace [7,22]. Pertaining to GN, a recent examination involving 

1,979 IgAN patients in China also established a significant 
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correlation between PM2.5 exposure and an escalated risk of kidney 

failure [23]. While IgAN is recognized as a specific classification of 

primary GN, our investigation provides a more encompassing 

understanding of the implications of particulate matter on kidney 

health within the Korean milieu. Delving into the mechanisms, 

various studies have elucidated the impact of air pollution on renal 

function. For example, one investigation showed that inhaled 

nanoparticles, prevalent in air pollution, can enter the bloodstream, 

accumulate in vascular lesions, and subsequently undergo filtration 

and excretion by the kidneys [24]. These pollutants have been 

identified to accumulate within the kidneys, provoke vascular 

complications [25], induce oxidative stress and inflammation leading 

to renal cell apoptosis—the programmed death of kidney cells—and 

impede autophagy—the cellular mechanism for degrading and 

recycling cellular components [26]. Exposure to particulate matter 

has been documented to initiate pathways that result in podocyte 

injury, a crucial component of the glomerular filtration barrier, 

accumulating inflammatory cytokines [27]. In individuals afflicted 

with GN, these adverse effects could manifest more severely due to 

pre-existing renal vulnerability.  

Our observations revealed that while both CO and NO2 were 

linked to RFD, the robustness and consistency of these associations 

varied. CO demonstrated a consistently significant association with 

RFD across all models. However, the relationship between NO2 
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exposure and RFD presented more variability. This association 

reached statistical significance at the .05 level in Models 2 and 3, 

yet it was not significant in Model 1. In terms of eGFR decline, CO 

was consistently associated with reduced eGFR, whereas NO2 did 

not exhibit a significant effect. These findings from our study add to 

the complex narrative found in existing literature concerning the 

impact of NO2 on renal health. Research exploring the influence of 

NO2 on renal function within the general populace or among patients 

with non-GN conditions has produced inconsistent outcomes. For 

instance, a study  [28] analyzing data from 26,985 individuals in 

Poland discovered that increments in medium-term and annual NO2 

and PM2.5 levels corresponded with an increased prevalence of CKD 

patients. Similarly, a study involving 169 older adults identified a 

linkage between short- and medium-term exposure to NO2 and a 

decline in eGFR [29]. Conversely, a study [30] observed that long-

term exposure to elevated levels of PM10 and SO2, but not NO2, 

associated with diminished eGFR values. A study on Korean adults 

revealed that long-term exposure to PM2.5, PM10, CO, and NO2 was 

associated with diminished eGFR levels, albeit effects on CKD were 

observed only for PM2.5 and PM10 [31]. Direct evidence linking NO2 

exposure to renal health remains scarce, in contrast to its 

acknowledged impacts on cardiovascular and pulmonary systems. 

Nevertheless, the broad biological and pathological pathways of air 

pollutants still affect kidney health, as noted by [32]. Discrepancies 



 

３４ 

across studies could arise from different methods of measuring NO2 

exposure (hourly or annually), its combustion-related generation, 

and the residential proximity of patients to major roadways and 

industrial facilities, which are significant sources of NO2, potentially 

influencing the extent of renal effects observed due to increased 

exposure levels for those living nearby [33].  

Acknowledging the complex mix of various air pollutants in 

real-world atmospheric conditions, our study utilized two-pollutant 

models to account for the interaction between different pollutants. 

Even when controlling for CO and NO2, significant associations were 

still evident for PM10 and PM2.5 with RFD. However, upon adjusting 

for PM10, both CO and NO2 portrayed nonsignificant associations. 

Our results reflect the complexity of pollutant interactions, 

corroborated by other studies noting shifts in associations for CO 

and NO2 when comparing single-pollutant to two-pollutant models. 

For instance, a study of 8,497 Taipei City residents exploring long-

term air pollution exposure effects found that while PM10 and PM2.5 

absorbance remained significantly associated with reduced eGFR in 

two-pollutant models, NO2 exhibited only a marginal 

association [34]. Similarly, in a study with 1,839 participants in 

Thailand, long-term air pollution impacts showed that the relations 

between PM10 and SO2 with eGFR persisted in two-pollutant 

models, whereas CO showed no significant association with eGFR 

when PM10 and SO2 were included as covariates [30]. Although the 



 

３５ 

specific mechanisms underlying these patterns remain elusive, 

studies exploring how air pollution contributes to mortality rates 

suggest that the effects attributed to NO2 might surpass its direct 

harm, hypothesizing that NO2 acts as an indicator for a wider array 

of pollutants due to its significant correlation with these pollutants, 

which are products of combustion. This correlation primarily signals 

particulate matter as a major contributor to the documented health 

impacts [35,36]. 

A subgroup analysis was conducted to identify group-specific 

differences in the impacts of air pollution on renal function. 

Increased HRs for RFD were observed associated with PM10 and CO 

exposure in older age groups, suggesting a potential age-related 

increase in susceptibility. This observation aligns with prior 

research indicating that air pollution exerts a more substantial 

impact on the elderly, manifesting as elevated mortality rates and 

increased signs of oxidative stress and inflammation due to 

compromised air quality  [37-39]. Furthermore, a study conducted 

in Shanghai highlighted that individuals aged 65 and older were 

particularly susceptible to the adverse effects of long-term PM10 

exposure on CKD and the deterioration of eGFR, reinforcing the 

argument that the senior demographic suffers more significantly 

from the renal detriments of air pollution [40]. When examining GN 

types, MCD and MPGN exhibited different responses to various air 

pollutants. The disparities observed in MPGN could be ascribed to 
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its limited sample size, potentially diminishing the statistical power 

and precision. MCD demonstrated lower HRs in response to 

particulate matter, yet, in contrast, it displayed elevated HRs with 

CO and NO2 exposure. Characterized by its ephemeral, steroid-

responsive attributes, MCD typically culminates in positive 

outcomes [41]. A survey involving 580 GN patients revealed that 

those with MCD experienced the most favorable renal health 

outcomes and survival rates, likely owing to the condition’s benign 

nature and effective response to corticosteroid treatment [42]. 

Despite their reversible nature, the higher HRs observed with CO 

and NO2 may be attributable to the distinct properties of these 

pollutants. It is postulated that PM’s physical damage and 

inflammatory response stem from its particle size, whereas CO and 

NO2, being gaseous, dissolve into the bloodstream and cause 

chemical reactions leading to inflammation, thus eliciting divergent 

responses [43]. Additionally, our study corroborates that a higher 

BMI is linked to increased HRs for air pollutants, resonating with 

findings from prior research. A study [44] discovered that long-

term exposure to elevated levels of air pollutants significantly 

exacerbated kidney function in individuals with higher abdominal 

adiposity. Another investigation underscored that obese adults were 

particularly prone to the harmful renal outcomes of air pollution, 

with substances like sulfur dioxide playing a pivotal role, and 

elevated levels of trans fatty acids in the bloodstream intensifying 
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the adverse effects [45]. These insights highlight the heightened 

vulnerability of individuals with obesity to the renal damage induced 

by air pollution. 

This study is not without its limitations. Primarily, it is 

retrospective in nature, although the prospective enrollment of 

patients stands as a strength. Secondly, the accuracy of air pollution 

exposure measurement is subject to potential errors. The estimated 

ground-level concentrations of pollutants (PM10, PM2.5, CO, NO2) 

were derived from a highly detailed 1 km × 1 km grid, as delineated 

by [20]. While this method, which integrates multiple predictors 

such as satellite data, land use, and socioeconomic variables, 

provides a high-resolution representation of air pollution, these 

estimates are based on complex modeling and aggregation 

processes from multiple data sources. Consequently, despite the 

granular approach, there may exist some inherent variability in 

estimation accuracy and methodology. Occasionally, reliance was 

solely on the last known addresses of the patients, which may have 

introduced discrepancies in exposure assessments. Moreover, our 

exposure assessment based solely on residential addresses may not 

fully capture individual exposure patterns, as people often spend a 

significant amount of time in different locations, such as workplaces 

or other places of activity, which may have different levels of air 

pollution. Additionally, this study’s reliance on monthly average 

values for air pollutants limits the capability to pinpoint short-term 
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fluctuations that might profoundly affect renal function. Furthermore, 

certain regional factors such as population density or the ratio of 

physicians per thousand inhabitants, previously proven to influence 

kidney function in other investigations [30], were not included in 

our analysis. This decision was partly due to our cohort’s 

composition, dominated by residents (86%, or 1,200 out of 1,394 

patients) from the metropolitan areas of Seoul, Gyeonggi-do, and 

Incheon. Given this concentration, incorporating more regional 

factors might not have markedly shifted our outcomes yet could 

curb their applicability beyond these urban areas. Moreover, the 

study did not account for lifestyle factors such as diet, physical 

activity, or dyslipidemia, known to significantly impact kidney 

function. Variability in diagnostic practices among pathologists 

across different institutions could have also introduced 

inconsistencies in participant recruitment and diagnosis accuracy. 

Acknowledging these constraints, we suggest that future research 

should explore these dynamics more thoroughly and consider 

standardizing diagnostic processes, perhaps through the 

incorporation of secondary reviews, to bolster the robustness and 

comparability of research outcomes. 

In spite of these limitations, our investigation stands out as the 

first to examine the long-term effects of air pollution on patients 

with primary GN. By focusing on this distinct cohort, we provide 

new insights into how different pollutants affect renal function over 



 

３９ 

time. These findings advance our understanding of the 

environmental determinants of kidney health and underline the 

importance of considering air quality in both the management and 

prevention of kidney disease, providing valuable insights for health 

care providers and policy makers. 

 

2.5. Conclusions 

Our study stands out as the first investigation to examine the 

long-term effects of air pollution exposure on renal function in 

patients with primary GN. We observed significant associations 

between elevated levels of PM10, PM2.5, CO, and NO2 with the 

progression of RFD, as well as between PM10, PM2.5, and CO with 

lower eGFR, after adjusting for control variables. These findings 

enhance our comprehension of the environmental factors influencing 

kidney health and emphasize the necessity of factoring air quality 

into kidney disease management and prevention strategies, offering 

critical implications for healthcare professionals and policymakers. 
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Chapter 3. Validation of an Acute Kidney 

Injury Prediction Model as a Clinical 

Decision Support System2 

 

3.1. Study Background 

Acute kidney injury (AKI) is a prevalent and serious clinical 

condition that requires immediate management [4]. AKI commonly 

occurs in hospitalized patients, with a prevalence ranging of 6–18%, 

and its incidence tends to increase gradually over time during 

hospitalization  [46,47]. Despite numerous studies on early AKI 

detection, proactive management strategies remain uncommon [46]. 

The integration of artificial intelligence (AI) into clinical decision 

support (CDS) systems has emerged as a promising approach to 

address this gap [47-49]. AI has the potential to enhance 

predictive performance by identifying patients at higher risk of 

developing diseases and clinical deterioration and who would benefit 

from specific management strategies [47]. AI-based CDS systems 

leverage vast clinical data to provide real-time insights and 

recommendations that can significantly improve risk assessment 

 

2 This chapter is based on work accepted for publication in 

Kidney Research and Clinical Practice. 
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accuracy and patient outcomes [50]. Furthermore, AI can help 

reduce the cognitive load on clinicians by automating routine tasks 

and highlighting critical information, allowing healthcare 

professionals to focus on complex decision-making processes [51].  

Building upon our previous work where we developed an AI 

prediction model for AKI [52], we developed the PRIME Solution 

(PRedIction and Management of acute kidney injury with 

Explainable AI). This model not only predicts the occurrence of 

AKI but also uses layer-wise relevance propagation (LRP) [53] 

among explainable AI methods, to highlight the most critical factors 

influencing the predictions. This approach allows physicians to 

understand the rationale behind the predictions and gain insights 

into necessary corrective actions.  

However, AI-based CDS systems can sometimes generate 

inaccurate predictions or poorly tailored suggestions, potentially 

leading to clinician distrust and reduced efficacy [47,54]. We 

hypothesized that an explainable AI model like PRIME Solution 

could improve predictive performance and clinician acceptance by 

providing transparency into its decision-making process. To test 

this hypothesis, we designed a study to assess the impact of PRIME 

Solution on AKI predictions made by healthcare professionals of 

varying expertise levels. 

We conducted this study with two primary objectives: first, to 

compare the predictive performance of our PRIME Solution with 
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that of physicians and medical students; and second, to evaluate 

how AI assistance influences the prediction capabilities of these 

healthcare professionals. By comparing their performance with and 

without AI assistance, we aimed to assess the efficacy and value of 

our AI model in enhancing human clinical judgment in AKI 

prediction. 

 

3.2. Methods 

3.2.1. Study Design 

This single-center study was conducted at a tertiary hospital in 

South Korea, Seoul National University Bundang Hospital (SNUBH), 

from April 2023 to February 2024 and involved a prospective 

evaluation using patient data collected retrospectively. The study 

comprised two main phases, with a preliminary phase of AI model 

development. 

Preliminary Phase: Development of the AI model (PRIME 

Solution). Convolutional neural networks (CNNs) with residual 

blocks were designed to predict AKI in hospitalized patients. The 

model was developed using data from a tertiary hospital, Seoul 

National University Hospital (SNUH), and externally validated using 

data from SNUBH. 

Main Evaluation Phases:  

1. AKI prediction without AI assistance (SET1). Clinical 

evaluators assessed the risk of AKI for 100 patients 
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selected from the SNUBH dataset without AI assistance. 

2. AKI prediction with AI assistance (SET2). Evaluators used 

the PRIME Solution’s predictions, including interpretative 

analyses of risk factors derived from the model’s LRP 

outputs, to assess the same selected patients as in SET1. 

We assessed the impact of PRIME Solution on clinical decisions 

by comparing evaluations performed with and without AI assistance. 

The Institutional Review Boards of SNHBH and SNUH approved the 

model development (IRB no. B-1811-502-004, J-1903-090-

1019), external validation (IRB no. B-2205-757-305), and 

evaluation (IRB no. B-2304-825-304) phases of this study. This 

study adhered to the 1975 Declaration of Helsinki. The requirement 

for informed consent from patients was waived because of the 

retrospective nature of the data and minimal risk posed by the 

study. Written informed consent was obtained from all participating 

evaluators. 

 

3.2.2. Data Collection 

The development data set comprised 183,221 inpatient 

admissions from SNUH between 2013 and 2017. The dataset was 

collected from electronic health records and included data regarding 

various clinical parameters, laboratory results, and patient 

demographics. We split these admissions into 70% for training, 15% 

for validation, and 15% for testing. An additional 4,501 admissions 
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from SNUBH were used for external validation. Both datasets 

included adult patients hospitalized for at least 3 days, without prior 

dialysis, baseline creatinine level less than 4.0 mg/dL, and baseline 

estimated glomerular filtration rate of 15 mL/min/1.73 m2 or higher. 

 

3.2.3. Definition of AKI 

AKI was defined based on KDIGO (Kidney Disease: Improving 

Global Outcomes) criteria [55]. Due to the limited availability of 

urine output data, only serum creatinine criteria were used. AKI 

was defined as an increase in serum creatinine by ≥0.3 mg/dL or 

an increase to ≥1.5 times from the baseline value. The baseline 

creatinine was determined as the minimum value from 

measurements taken within 14 days before admission. If no 

measurements were available within this period, we used 

measurements from within 90 or 180 days before admission. In 

cases where no pre-admission measurements were available, the 

minimum value from the admission day was used. 

 

3.2.4. Model Development 

We utilized CNNs with residual blocks for AKI prediction, 

focusing on predicting the onset of AKI. CNNs were chosen 

because of their proven effectiveness in pattern recognition and 

classification tasks, particularly in time-series data relevant to AKI 

prediction [56,57]. Specifically, ResNet was selected owing to its 
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ability to learn detailed data patterns [58]. The comprehensive 

details of our model development are presented in the following 

figures and table: Table 7 provides an overview of the features 

used in the AKI prediction model with their detailed descriptions; 

Figure 3 illustrates the systematic data preprocessing workflow 

implemented for optimal model performance; Figure 4 presents the 

detailed architecture of our AKI prediction model; and Figure 5 

demonstrates the model's performance through ROC curves. 

 

Table 7. Categories and Descriptions of Features Used in the AKI 

Prediction Model 

Category Features 

Demographicsa Age, Sex, Body mass index 

Clinical Statusb ICU admission 

Baseline Kidney 

Functionc 

Baseline creatinine, Baseline eGFR 

Comorbiditiesd Acute myocardial infarction, Congestive heart failure, 

Peripheral vascular disease, Dementia, Pulmonary disease, 

Connective tissue disorder, Peptic ulcer, Paraplegia, Renal 

disease, Cancer, Metastatic cancer, Diabetes mellitus, 

Diabetes complications, Cardiovascular diseases, Liver 

disease, Severe liver disease, HIV/AIDS, Hypertension, 

Acute Kidney Injury 

Comorbidity Indexe Charlson Comorbidity Index 

Medicine Usef  Angiotensin-converting enzyme inhibitor, Acyclovir, 
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Category Features 

Aminoglycoside, Amphotericin B, Angiotensin receptor 

blockers (ARBs), Beta blocker, Calcium Channel Blockers, 

Cisplatin, Colistin, Cyclosporine, Diuretics, Nonsteroidal 

anti-inflammatory drugs (NSAIDs), Statin, Tacrolimus, 

Vancomycin, Vasopressor 

Laboratory 

Findingsg 

Albumin, Bilirubin, Blood urea nitrogen, Calcium, Chloride, 

Creatine kinase, Total CO2, Serum creatinine, C-reactive 

protein, Glucose, AST, ALT, Hemoglobin, Lipase, Platelet, 

Potassium, Sodium, Troponin I, White blood cell count 

Vital Signsg Systolic blood pressure, Diastolic blood pressure, Heart rate, 

Body temperature 

Surgery 

Informationh 

General Anesthesia, Non-general anesthesia, Surgery time 

a Static variables: Age and BMI are continuous; Sex is binary (male = 1). 
b Static variable: Binary indicating ICU admission at the time of hospital 

admission. 
c Static variables: Continuous measurements (creatinine is the minimum value 

from 6 months prior to admission; eGFR is the maximum value during the same 

period). 
d Static variables: All comorbidities are binary, indicating diagnosis before 

admission based on ICD-10 codes. 
e Static variable: Continuous, calculated using the comorbidities. 
f Static and Dynamic variables: For each medication, a static binary variable 

indicates prescription within 6 months prior to admission. Dynamic binary variables 

indicate daily prescription status for the first 7 days of admission. 
g Dynamic variables: Continuous measurements aggregated into 8-hour 

intervals for the first 7 days of admission. For Laboratory Findings, the mean value 

is calculated for each 8-hour period. For Vital Signs, the mean, minimum, and 

maximum values are calculated for each 8-hour period. 
h Static variables: General and Non-general anesthesia are binary; Surgery 

time is continuous. 
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Figure 3: Data Preprocessing Workflow for AKI Prediction Model. 

 

This flowchart illustrates the preprocessing steps for static (tabular) and 

dynamic (time series) data used in our AKI prediction model. For dynamic data, 

missing values are first filled with the most recent previous value when available. 

Remaining missing values in both static and dynamic data are then handled by 

categorizing patients into AKI and non-AKI groups (based on the first 48 hours 

for static data, and the preceding 48-hour window for dynamic data) and filling 

with respective group averages. Finally, flag data is added to mark initially missing 

values. 
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Figure 4: Architecture of the AKI Prediction Model  

 
(A) Sliding Window Approach: The upper part of the figure illustrates the 

sliding window approach for time series data. It uses a 48-hour input window to 

predict AKI occurrence within the subsequent 48 hours. The model uses data from 

the first 7 days of admission to predict AKI occurrence up to the 8th day. Each day 

is divided into three 8-hour time slots for data aggregation. 

(B) Model Architecture: The lower part of the figure depicts the model 

structure. The model employs dual input processing, separately handling static and 

dynamic features through initial Residual Blocks (ResBlocks). The core of the 

model uses a Residual Network (ResNet) structure, with each ResBlock containing 

three CNN layers. Skip connections are implemented to facilitate gradient flow 

during training. The output stage consists of an Average Pooling layer followed by 

Linear layers with activation functions for final prediction. 

Key components of the model include Residual Blocks (Res Block) for 

enhancing model depth, Convolutional Neural Network layers (CNN), activation 

functions (a), an Average Pooling layer (AVG Pool), and Linear layers (L). 

The model was trained using a learning rate of 1e-4, a batch size of 256, and 

the Adam optimizer. Early stopping was implemented using a validation set to 

prevent overfitting. The total structure comprises five Residual Blocks: two initial 

blocks for separate input processing and three in the main body as shown in the 

figure. The hidden dimension was set to 128, and the kernel size for CNN layers 

was 3. 

During model development, we conducted experiments with various 

hyperparameters, focusing on the ResNet structure’s hidden dimension and the 

number of Residual Blocks. These parameters significantly influence the model’s 
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capacity and performance. We observed that reducing these parameters led to 

underfitting, while increasing them beyond the current configuration resulted in 

overfitting and reduced generalization performance. The final configuration (hidden 

dimension of 128 and five Residual Blocks) was selected as it provided the best 

balance between model complexity and generalization ability. 

 

Figure 5. Receiver Operating Characteristic (ROC) curves of the 

PRIME solution model. 

A                                 B 

 

(A) ROC curve for the test set (AUC = 0.898). (B) ROC curve for the external 

validation set (AUC = 0.876). The area under the ROC curve (AUC-ROC) 

provides a measure of the model’s ability to distinguish between AKI and non-AKI 

cases. An AUC of 1.0 represents a perfect test, while an AUC of 0.5 represents a 

test no better than random chance. 

 

To determine the optimal threshold for the PRIME Solution, we 

tested various thresholds for both our original test set and the 

external validation set. Based on these tests, we set the prediction 

threshold to 0.9 for this study (Table 8). To enhance model 

interpretability, we used LRP to determine the contribution of each 

feature to the predictions of the model (Figure 6). 
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Table 8. Performance Metrics of the PRIME Solution Model on Test 

Set and External Validation Set at Selected Thresholds 

A 

Threshold Accuracy Precision Recall F1 Specificity 

0.3 0.80 0.07 0.84 0.13 0.79 

0.5 0.89 0.10 0.73 0.18 0.89 

0.7 0.94 0.16 0.56 0.25 0.95 

0.9 0.98 0.30 0.24 0.26 0.99 

B 

Threshold Accuracy Precision Recall F1 Specificity 

0.3 0.53 0.05 0.94 0.09 0.52 

0.5 0.70 0.07 0.89 0.13 0.70 

0.7 0.83 0.11 0.74 0.18 0.83 

0.9 0.94 0.21 0.42 0.28 0.96 

(A) Model performance on test set. (B), Model performance on external 

validation set. The table presents model performance at various thresholds (0.3, 

0.5, 0.7, 0.9). The model was initially optimized for high recall to capture a wide 

range of potential AKI cases. Lower thresholds (e.g., 0.3) demonstrate this high-

recall characteristic. For clinical implementation, a threshold of 0.9 was selected to 

balance the model’s sensitive detection capabilities with the need for higher 

specificity in practical settings. This choice aims to minimize false positives while 

maintaining the model’s ability to identify high-risk cases. 
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Figure 6: Schematic representation of the Layer-wise Relevance 

Propagation (LRP) process in AKI prediction model. 

 

The figure demonstrates how relevance is propagated from the outcome (left) 

to the input features (right). The model distinguishes between AKI and non-AKI 

cases, with red lines indicating positive relevance and thicker lines representing 

stronger relevance. LRP is an Explainable AI technique we employed to enhance 

the transparency of our model. It offers several key advantages: interpretability by 

mapping model decisions back to input data and highlighting influential features; 

robustness through the use of Deep Taylor Decomposition to mitigate noise issues 

common in gradient-based methods; relevance preservation by maintaining 

relevance values between layers, enabling input-to-output relevance tracing; and 

improved clinical integration by facilitating trust and integration into clinical 

workflows through clear explanations. LRP decomposes the model into linear 

mappings, allowing clinicians to understand which factors most significantly 

influence the model’s predictions, potentially aiding in decision-making and 

increasing confidence in AI-assisted predictions. By using LRP, we address the 

‘black-box’ nature of deep learning models, making our AKI prediction tool more 

transparent and interpretable for clinical use. This figure is adapted from Seong et 

al., "Explainable AKI Prediction with ResNet Toward Real-Time Clinical Decision 

Support," presented at the KCC XAI 2024 Workshop, part of KCC 2024 (Korea 

Computer Congress 2024), with permission from the authors. 

 

 

 

 

 



 

５２ 

3.2.5. Data Preparation and Evaluation 

For the evaluation phases (SET1 and SET2), we used the data 

of 100 patients admitted to SNUBH between 2020 and 2021. 

Twenty patients each were selected from the geriatrics, urology, 

nephrology, surgery, and orthopedics departments, reflecting the 

proportion of AKI occurrences across these specialties. The 

baseline characteristics of these patients are presented in Table 9. 

Prediction time points were selected as evenly as possible from 

days 1 to 7 of hospitalization, with an emphasis on the initial days to 

account for shorter hospitalizations. Only data before AKI onset 

were included because the goal of the model was to predict the 

initial occurrence of AKI. Of the 100 patients in the study, 15 

developed AKI. During model optimization, 26 patients were 

excluded due to lack of creatinine data or no change over the 

course of 48 hours. The remaining 74 patients, including 14 AKI 

occurrences, were used for most evaluations; however, the data of 

all 100 patients were used when comparing the performance based 

on the predictions of the PRIME Solution. 
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Table 9. Baseline Characteristics and Outcomes of the Model 

Evaluation Cohort Stratified by AKI Occurrence 

Characteristics 
AKI  

(n=15) 

No AKI 

(n=85) 
p-value 

Age (years), mean (SD) 71.3 (12.1) 67.5 (17.8) 0.434 

Male sex, n (%) 8 (53.3) 39 (45.9) 0.801 

Body mass index (kg/m2), mean (SD) 25.3 (3.7) 28.2 (44.3) 0.803 

ICU admission, n (%) 1 (6.7) 1 (1.2) 0.689 

Baseline creatinine (mg/dL), mean (SD) 1.1 (0.6) 1.0 (0.6) 0.767 

Baseline eGFR (mL/min/1.73 m2), mean 

(SD) 
79.8 (49.5) 84.0 (51.5) 0.770 

Comorbidities    

Acute myocardial infarction, n (%) 0 (0.0) 1 (1.2) 0.325 

Congestive heart failure, n (%) 0 (0.0) 3 (3.5) 0.935 

Peripheral vascular disease, n (%) 0 (0.0) 3 (3.5) 0.935 

Dementia, n (%) 0 (0.0) 6 (7.1) 0.637 

Pulmonary disease, n (%) 1 (6.7) 9 (10.6) 1.000 

Connective tissue disorder, n (%) 0 (0.0) 1 (1.2) 0.325 

Peptic ulcer, n (%) 0 (0.0) 4 (4.7) 0.886 

Paraplegia, n (%) 0 (0.0) 0 (0.0) 1.000 

Renal disease, n (%) 2 (13.3) 9 (10.6) 0.893 

Cancer, n (%) 4 (26.7) 38 (44.7) 0.307 

Metastatic cancer, n (%) 0 (0.0) 2 (2.4) 0.689 

Diabetes mellitus, n (%) 0 (0.0) 16 (18.8) 0.147 
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Characteristics 
AKI  

(n=15) 

No AKI 

(n=85) 
p-value 

Diabetes complications, n (%) 2 (13.3) 4 (4.7) 0.479 

Cardiovascular diseases, n (%) 2 (13.3) 19 (22.4) 0.655 

Liver disease, n (%) 0 (0.0) 1 (1.2) 0.325 

Severe liver disease, n (%) 0 (0.0) 0 (0.0) 1.000 

Hypertension, n (%) 0 (0.0) 20 (23.5) 0.080 

Acute Kidney Injury, n (%) 4 (26.7) 6 (7.1) 0.062 

Charlson Comorbidity Index, median 

(IQR) 

2.0 (0.0-

2.0) 

2.0 (0.0-

3.0) 
0.118 

Medicine use within six months prior to admission 
  

Angiotensin-converting enzyme 

inhibitor, n (%) 

0 (0.0) 0 (0.0) 1.000 

Acyclovir, n (%) 0 (0.0) 0 (0.0) 1.000 

Aminoglycoside, n (%) 0 (0.0) 0 (0.0) 1.000 

Amphotericin B, n (%) 0 (0.0) 0 (0.0) 1.000 

Angiotensin receptor blockers (ARBs), n 

(%) 

3 (20.0) 10 (11.8) 0.647 

Beta blocker, n (%) 1 (6.7) 6 (7.1) 0.621 

Calcium Channel Blockers, n (%) 4 (26.7) 17 (20.0) 0.810 

Cisplatin, n (%) 0 (0.0) 0 (0.0) 1.000 

Colistin, n (%) 0 (0.0) 0 (0.0) 1.000 

Cyclosporine, n (%) 0 (0.0) 0 (0.0) 1.000 

Diuretics, n (%) 4 (26.7) 12 (14.1) 0.401 

NSAIDs, n (%) 9 (60.0) 42 (49.4) 0.634 
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Characteristics 
AKI  

(n=15) 

No AKI 

(n=85) 
p-value 

Statin, n (%) 4 (26.7) 8 (9.4) 0.143 

Tacrolimus, n (%) 0 (0.0) 0 (0.0) 1.000 

Vancomycin, n (%) 0 (0.0) 0 (0.0) 1.000 

Vasopressor, n (%) 4 (26.7) 10 (11.8) 0.258 

Outcomes AKI No AKI  p-value 

Incident AKI 15 (100) 0 (0.0) <0.001 

Incident Critical AKI 2 (13) 0 (0.0) 0.016 

Binary variables are presented as n (%) and compared using chi-square test. 

Continuous variables are primarily presented as mean (SD) and compared using t-

test. For variables not following normal distribution, data are presented as median 

(IQR) and compared using Mann-Whitney U test. SD: Standard Deviation; IQR: 

Interquartile Range. 

 

This study involved the following three groups of 11 evaluators: 

specialists (one board-certified nephrology subspecialist with 18 

years of nephrology training and one internal medicine specialist 

with 2 years of nephrology training); physicians (one internal 

medicine specialist without nephrology training and three internal 

medicine trainees); and medical students (five students from 

different years of medical school). 

Two-stage tests were conducted. For SET1, the evaluators 

independently reviewed the digital format of the patient data to 

predict AKI occurrence within 48 hours. After a washout period of 

1 to 2 weeks, SET2 was conducted similarly, but with PRIME 
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Solution predictions, including predictions of the AKI occurrence, 

top 10 rationales derived from static data, and top 10 rationales 

derived from dynamic data. The evaluators used a custom 

evaluation platform with dedicated buttons to record the start and 

end times for each patient assessment. The platform automatically 

calculated the evaluation duration for each patient. The evaluators 

predicted AKI occurrence, selected up to 10 influential variables, 

and chose appropriate interventions for AKI management. These 

interventions were categorized into the following six main groups: 

patient assessment; medication review; imaging studies; 

hemodynamic stability monitoring; additional tests; and nephrology 

consultation. Each of these six groups had specific sub-actions 

(Table 10). The aim was to determine whether the predictions of 

the PRIME Solution influenced the behaviors of the evaluators. Two 

specialists finalized the key factors influencing each case of AKI. 

These key factors were used to evaluate how well the model and 

the evaluators selected the reasons for predicting the AKI 

occurrence. The match rate was calculated based on the number of 

variables chosen by the evaluators that matched the finalized key 

factors: Match rate = (Number of correctly identified key factors) / 

(Total number of key factors defined by the specialists).  
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Table 10: Detailed Interventions for AKI Prediction and 

Management  

Intervention Definition 

1. Patient Assessment  

1-1. Additional Vital Signs 

Measurement 

Check Vital Signs more frequently 

than the standard interval 

1-2. Sepsis Check Order at least one of: Blood culture, 

lactate, or procalcitonin 

1-3. Bladder Distension 

Promotion and Scan 

Order at least one of: Foley insertion, 

Clean Intermittent Catheterization 

(CIC), or Residual Urine (RU) check 

(preferably after urination) or check 

nursing records 

1-4. Fluid Balance Evaluation 

(Decreased/Normal/Excessive) 

Order input/output (I/O) check (every 

1, 4, 6, 8, 12 hours, or daily), body 

weight check, chest posteroanterior 

(PA) or anteroposterior (AP) X-rays  

2. Medication Review  

2-1. Discontinuation of 

Nephrotoxic Drugs 

Discontinue existing nephrotoxic 

medication within 24 hours 

2-2. Adjustment of Medication 

Dosage According to Renal 

Function 

Change dosage regimen (dose or 

frequency) based on renal function 

2-3. Fluid Prescription Prescribe or change fluid (normal 
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Intervention Definition 

saline, plasma solution, dextrose with 

bicarbonate solution, including pre-

contrast treatment) 

3. Imaging Studies  

3-1. Kidney Ultrasound (CT if 

necessary) 

Order ultrasound (US) of the kidneys, 

US kidney Doppler, genitourinary CT 

with or without contrast, abdominal-

pelvic CT (APCT) with or without 

contrast; refer to Radiology or 

Urology departments 

4. Hemodynamic Stability Monitoring 

4-1. Review of Antihypertensive 

Medication Dosage 

Change prescription of ARB, ACEi, 

CCB, diuretics (Thiazide, Loop 

diuretics, potassium sparing diuretics), 

Beta blocker, alpha blocker, 

vasodilator (discontinue or adjust 

dosage regimen) 

4-2. Anemia Check and 

Correction 

Order iron panel, ferritin, peripheral 

blood smear, or complete blood count  

5. Additional Tests  

5-1. Blood Tests Order at least one of the following: 

electrolyte panel, renal panel, urine 

osmolality, calcium (Ca), phosphorus 

(P), total carbon dioxide (TCO2), 

blood urea nitrogen (BUN), creatinine 
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Intervention Definition 

(Cr), neutrophil gelatinase-associated 

lipocalin (NGAL), cystatin C, pH 

5-2. Hematuria and Proteinuria 

Check 

Order urinalysis (U/A) using stick and 

microscopy, 10-panel stick test, or 

emergency U/A  

6. Nephrology Consultation  

6-1. Nephrology Consultation Refer to Nephrology for unclear 

causes or stage 3 AKI unresponsive to 

initial treatment, or dialysis-requiring 

AKI 

Abbreviations—ARB: Angiotensin Ⅱ receptor blocker, ACEi: Angiotensin 

converting enzyme inhibitor, CCB: Calcium channel blocker. 
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3.2.6. Statistical Analysis 

We investigated the impact of AI assistance on the prediction 

performance and evaluated the usefulness of PRIME Solution for 

AKI prediction. Performance was measured using various metrics, 

including accuracy, precision, recall, F1 score, specificity, negative 

predictive value, and false positive rate. Detailed definitions and 

equations for these metrics are provided in Table 11.  

 

Table 11: Definitions and Equations of Performance Metrics 

Metric Definition Equation 

Accuracy The proportion of correct 

predictions among the total 

number of cases examined 

(TP + TN) / (TP + TN 

+ FP + FN) 

Precision The proportion of correct 

positive predictions out of all 

positive predictions 

TP / (TP + FP) 

Recall 

(Sensitivity) 

The proportion of actual 

positive cases that were 

correctly identified 

TP / (TP + FN) 

F1 Score The harmonic mean of 

precision and recall 

2 * (Precision * Recall) / 

(Precision + Recall) 

Specificity The proportion of actual 

negative cases that were 

correctly identified 

TN / (TN + FP) 



 

６１ 

Metric Definition Equation 

NPV 

(Negative 

Predictive 

Value) 

The proportion of correct 

negative predictions out of all 

negative predictions 

TN / (TN + FN) 

FPR (False 

Positive Rate) 

The proportion of actual 

negative cases that were 

incorrectly identified as 

positive 

FP / (FP + TN) 

Note: TP = True Positive, TN = True Negative, FP = False Positive, FN = 

False Negative  

 

Comparisons within SET1 and SET2 among evaluator groups 

were performed using one-way analysis of variance (ANOVA). 

Paired t-tests were performed to compare changes between SET1 

and SET2. For analyses of prediction duration and match rates, we 

utilized all available data points for comparisons between SET1 and 

SET2 for each evaluator group. Behavioral changes were analyzed 

by comparing the number of selected actions for each behavior type 

between SET1 and SET2. All statistical analyses were conducted 

using R software (version 4.3.2) and Python (version 3.8.16). 

P<0.05 was considered statistically significant. 
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3.3. Results 

3.3.1. Comparison of the Performance Between Evaluators 

and AI Model (SET1) 

The SET1 scenario revealed distinct performance patterns 

among groups (Figure 7, Table 11, Table 12). Specialists 

demonstrated the highest accuracy (79.7%) and precision (46.4%) 

when predicting AKI without AI assistance. The PRIME Solution 

excelled in recall (78.6%) but had the lowest precision (27.5%), 

indicating a high rate of both potential AKI case identification and 

false positives. F1 scores were comparable across all groups 

(36.4%−40.4%; p=0.697), suggesting a similar balance of precision 

and recall despite varying individual metrics. Physicians exhibited 

the second-highest recall (76.8%) after the AI model, while 

maintaining moderate precision. Medical students performed 

intermediate, with accuracy (61.9%) falling between that of 

specialists and physicians. 
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Figure 7. Comparison of prediction metrics of specialists, 

physicians, medical students, and the PRIME Solution. 

 
(A) Visual representation of acute kidney injury (AKI) prediction task. (B) 

Accuracy, (C) precision, (D) recall, and (E) F1 score. Bars represent the average 

performance of each group. Error bars reflect the 95% confidence intervals. The 

analysis of variance p-value indicates the statistical significance of differences 

between groups. Icons are designed by Freepik. 
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Table 12. Comparison of Prediction Performance Metrics for Acute 

Kidney Injury of Specialists, Physicians, and Medical Students With 

and Without AI Assistance 

Group Accuracy Precision Recall F1 Specificity NPV FPR 

AI model 0.568 0.275 0.786 0.407 0.517 0.912 0.483 

SET1 (without AI assistance) 

Specialist 0.797 0.464 0.321 0.364 0.908 0.852 0.092 

Physician 0.557 0.281 0.768 0.404 0.508 0.909 0.492 

Medical student 0.619 0.326 0.600 0.382 0.623 0.872 0.377 

Overall 0.629 0.335 0.610 0.387 0.633 0.882 0.367 

ANOVA p-value 0.123 0.294 0.022 0.697 0.082 0.050 0.082 

SET2 (AI-assisted) 

Specialist 0.743 0.391 0.643 0.486 0.767 0.902 0.233 

Physician 0.510 0.248 0.768 0.371 0.450 0.902 0.550 

Medical student 0.586 0.339 0.757 0.434 0.547 0.905 0.453 

Overall 0.587 0.315 0.740 0.420 0.552 0.904 0.448 

ANOVA p-value 0.201 0.464 0.693 0.412 0.199 0.996 0.199 

Comparison of SET1 and SET2 

t test p-value 0.047 0.366 0.045 0.279 0.002 0.286 0.002 

Abbreviations: AI, Artificial Intelligence; F1, F1 Score; NPV, Negative 

Predictive Value; FPR, False Positive Rate; ANOVA, analysis of variance. The 

presented values represent the mean score of each metric for each group. For 

detailed explanations of the metrics, see Table 11. The ANOVA p-value 

represents the results of the ANOVA performed to compare the metrics of the 
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specialist, physician, and medical student groups for each set (SET1 and SET2). 

The t-test p-value represents the results of a paired t-test performed to 

compare the metrics for SET1 and SET2. 

 

3.3.2. Comparison of Prediction Performance Metrics 

According to AI Predictions (SET2) 

3.3.2.1. Impact of Assistance Provided by PRIME Solution on 

Different Skill Levels  

AI assistance in SET2 significantly improved overall recall 

across all groups (from 61.0% to 74.0%; p=0.045) (Table 12, 

Figure 8), with specialists demonstrating the most substantial 

increase (from 32.1% to 64.3%). F1 scores also improved (from 

38.7% to 42.0%; p=0.279), particularly for specialists (from 36.4% 

to 48.6%). However, specificity decreased across all groups (from 

63.3% to 55.2%; p=0.002), accompanied by increases in false-

positive rates (from 36.7% to 44.8%; p=0.002). Figure 8 reveals 

individual variations within groups: specialists consistently 

demonstrated improved recall and F1 scores but experienced a 

slight decrease in accuracy; physicians showed variable precision 

and recall; and medical students exhibited overall enhancements but 

did not reach specialist levels of accuracy and precision. These 

results indicate that AI assistance had varying impacts across 

different expertise levels, with the most pronounced effects 

observed in the specialist group.  
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Figure 8. Comparison of prediction performance metrics with and without the support of the PRIME Solution.  

 

(A) Comparative overview: non-assisted vs. AI-assisted prediction. (B-E) Accuracy, precision, recall, and F1 score of SET1 

(non-assisted) and SET2 (AI-assisted). Bars represent the average performance of each set. Error bars reflect the 95% confidence 

intervals. The p-values indicate statistical significance based on paired t-tests. (F-I) Accuracy, precision, recall, and F1 score of 

each group with (SET2) and without (SET1) the support of the PRIME Solution. Dots represent the metrics of individual participants, 

and the lines connect the metrics of the same participant with and without AI assistance. Icons are designed by Freepik.
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3.3.2.2. Changes in the Performance According to PRIME Solution 

Predictions 

We examined how the predictions of the PRIME Solution 

affected the evaluators’ performance. When PRIME Solution 

predicted AKI occurrence, the recall increased significantly, 

especially among the specialists (from 36.4% to 77.3%). Regarding 

the predictions of nonoccurrence, the precision and F1 scores 

improved, notably among specialists (precision: from 20% to 

33.3%) and medical students (F1 score: from 21.1% to 40%) 

(Table 13).  

 

 

Table 13. Comparison of Prediction Performance Metrics between 

Specialists, Physicians, and Medical Students according to AI 

prediction results 

Group Set Accuracy Precision Recall F1 Specificity NPV FPR 

AI predicts AKI occurrence (40 Cases, 11 with AKI occurrence) 

Specialist 
SET1 0.738 0.533 0.364 0.432 0.879 0.785 0.121 

SET2 0.612 0.395 0.773 0.523 0.552 0.865 0.448 

Physician 
SET1 0.600 0.391 0.818 0.529 0.517 0.882 0.483 

SET2 0.469 0.322 0.841 0.465 0.328 0.844 0.672 

Medical 

Student 

SET1 0.590 0.361 0.636 0.461 0.572 0.806 0.428 

SET2 0.485 0.321 0.782 0.455 0.372 0.818 0.628 
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Group Set Accuracy Precision Recall F1 Specificity NPV FPR 

AI predicts NO AKI occurrence (34 Cases, 3 with AKI occurence) 

Specialist 
SET1 0.868 0.200 0.167 0.182 0.935 0.921 0.065 

SET2 0.897 0.333 0.167 0.222 0.968 0.923 0.032 

Physician 
SET1 0.507 0.101 0.583 0.173 0.500 0.925 0.500 

SET2 0.559 0.100 0.5 0.167 0.565 0.921 0.435 

Medical 

Student 

SET1 0.653 0.121 0.467 0.192 0.671 0.929 0.329 

SET2 0.706 0.182 0.667 0.286 0.710 0.957 0.290 

AI provides no prediction (26 Cases, 1 with AKI occurrence) 

Specialist 
SET1 0.981 0.667 1.000 0.800 0.980 1.000 0.020 

SET2 0.846 0.125 0.500 0.200 0.860 0.977 0.140 

Physician 
SET1 0.644 0.098 1.000 0.178 0.630 1.000 0.370 

SET2 0.596 0.068 0.750 0.125 0.590 0.983 0.410 

Medical 

Student 

SET1 0.800 0.138 0.800 0.235 0.800 0.990 0.200 

SET2 0.677 0.089 0.800 0.160 0.672 0.988 0.328 

Abbreviations—F1: F1 Score, NPV: Negative Predictive Value, FPR: False 

Positive Rate. 
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3.3.2.3. Changes in the Prediction Duration with AI Assistance 

AI assistance significantly reduced the decision-making 

duration from 73.8 seconds to 65.4 seconds (p<0.001). This 

reduction was more pronounced in cases where AI predicted that 

AKI would not occur (73.4 seconds to 62.1 seconds; p<0.001) 

compared to those where it predicted that AKI would occur (74.2 

seconds to 68.3 seconds; p=0.039) (Figure 9, Table 14). These 

results indicated that PRIME Solution improved both the prediction 

performance and evaluation speed. 
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Figure 9. Comparative analysis of the duration of the acute kidney 

injury (AKI) prediction: Evaluating the efficiency of the PRIME 

Solution’s assistance 

 

(A) Comparison of the mean durations of the AKI prediction tasks with and 

without the aid of PRIME Solution, indicating a difference in time efficiency. 

Analysis was conducted on 74 out of 100 cases where PRIME Solution provided 

predictions. (B) Analysis of the mean prediction durations of specialists, physicians, 

and medical students, showing variations between with and without AI assistance. 

Analysis was conducted on 74 out of 100 cases where PRIME Solution provided 

predictions. (C) Outlines of the mean prediction durations when the PRIME 

Solution predicted the occurrence of AKI (AKI+), predicted no occurrence of AKI 

(AKI-), and did not offer a prediction (No Pred). 
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Table 14. Individual and Group Analysis of Average Prediction 

Times for AKI with AI Assistance 

Group 

Average Time  

in SET1  

(Non-assisted) 

(second) 

Average Time  

in SET2  

(AI-assisted) 

(second) 

Average Time 

difference 

(second) 

P-

value 

Individual     

Specialist S1 64.8 48.0 16.8 0.000 

Specialist S2 60.9 53.2 7.7 0.034 

Physician P1 59.6 71.4 -11.9 0.088 

Physician P2 47.5 41.4 6.1 0.298 

Physician P3 39.0 71.2 -32.1 0.000 

Physician P4 60.2 66.6 -6.4 0.242 

Medical Student M1 86.2 56.9 29.4 0.000 

Medical Student M2 116.3 89.0 27.4 0.004 

Medical Student M3 131.7 114.7 17.0 0.051 

Medical Student M4 71.9 41.9 29.9 0.000 

Participant Group 

Specialist 62.8 50.6 12.3 0.000 

Physician 51.6 62.6 -11.1 0.000 

Medical Student 101.5 75.6 25.9 0.000 

Model Prediction     

AKI Occurrence 74.2 68.3 5.9 0.039 

No AKI Occurrence 73.4 62.1 11.3 0.000 

No Prediction 60.4 53.6 6.9 0.027 

Overall     

Overall 73.8 65.4 8.4 0.000 
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3.3.2.4. Behavioral Changes in Response to AI Predictions 

The PRIME Solution influenced the selection of clinical actions 

across all evaluator groups (Figure 10, Table 15). When the AI 

predicted AKI occurrence, participants tended to choose more 

actions, particularly fluid-related evaluations and additional testing. 

This increase was most notable among specialists and medical 

students. In contrast, predictions of nonoccurrence resulted in 

fewer changes in clinical action selections.  
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Figure 10. Changes in selected clinical actions: Impact of PRIME 

Solution’s assistance 

 

Variations in clinical actions selected by specialists, physicians, and medical 

students are observed, with each point indicating the change in the number of 

actions that an individual chose to take. An upward shift (+direction) in points 

represents an increase in selected actions in clinical decision-making in scenarios 

with AI assistance compared to those without AI assistance. The figure is divided 

into three panels, each representing different prediction scenarios by PRIME 

Solution: (1) cases where AKI occurrence was predicted, (2) cases where no AKI 

was predicted, and (3) cases where no prediction was provided. This layout allows 

for comparison of how participants’ action selections changed across different 

prediction contexts.  
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Table 15: Mean Differences in Clinical Behaviors by AKI Prediction and Clinician Group 

Behavior 

AKI Predicted No AKI Predicted No Prediction 

Spec Phys Med Spec Phys Med Spec Phys Med 

1-0 0.00 0.00 -0.25 0.00 0.00 0.00 0.00 -0.25 0.25 

1-1 1.00 1.25 1.75 0.00 0.00 -0.25 -1.50 -1.25 3.00 

1-2 2.50 -0.25 1.75 -1.50 0.00 0.00 -1.50 -0.25 1.00 

1-3 0.00 -0.50 -0.25 0.00 1.00 -0.50 -1.00 0.50 0.00 

1-4 7.00 -6.25 4.50 -3.50 -3.00 4.25 1.00 -1.50 2.00 

2-0 0.00 0.25 0.00 0.00 0.00 -0.25 0.00 0.00 0.00 

2-1 1.00 0.50 6.00 -2.50 -1.00 5.25 0.00 1.75 4.00 

2-2 1.50 2.50 -2.25 0.00 -0.25 -2.50 0.50 0.50 -1.00 

2-3 10.00 -2.50 0.00 -0.50 -1.25 -1.50 1.50 -0.25 -0.75 

3-0 -0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3-1 1.50 1.25 -0.75 -1.00 0.00 -0.50 -0.50 1.25 0.00 

4-0 0.00 -0.50 0.00 0.00 0.00 -0.25 0.00 0.00 0.00 

4-1 -1.00 3.00 -0.50 0.00 1.00 -1.75 0.00 1.25 -0.50 
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Behavior 

AKI Predicted No AKI Predicted No Prediction 

Spec Phys Med Spec Phys Med Spec Phys Med 

4-2 3.00 0.00 3.50 3.00 -1.00 1.75 2.00 -1.00 1.25 

5-0 0.50 0.00 0.25 0.00 0.00 0.00 -0.50 0.00 0.00 

5-1 8.50 3.25 4.75 -0.50 0.00 2.75 -2.50 2.50 5.25 

5-2 4.00 6.50 1.50 0.50 1.25 0.75 0.50 2.00 1.25 

6-0 0.00 -1.00 1.75 0.00 -0.25 0.75 0.00 -0.50 0.75 

6-1 1.00 -0.50 0.25 0.00 0.00 1.00 -1.00 0.00 0.75 

P-value 0.001* 0.552 0.039* 0.295 0.552 0.338 0.504 0.345 0.007* 

Behavior codes: 1-0: Patient Assessment, 1-1: Additional Vital Signs Measurement, 1-2: Sepsis Check, 1-3: Bladder Distension 

Promotion and Scan, 1-4: Fluid Balance Evaluation 2-0: Medication Review, 2-1: Discontinuation of Nephrotoxic Drugs, 2-2: 

Adjustment of Medication Dosage, 2-3: Fluid Prescription 3-0: Imaging Studies, 3-1: Kidney Ultrasound 4-0: Hemodynamic 

Stability Monitoring, 4-1: Review of Antihypertensive Medication, 4-2: Anemia Check and Correction 5-0: Additional Tests, 5-1: 

Blood Tests, 5-2: Hematuria and Proteinuria Check 6-0: Nephrology Consultation, 6-1: Nephrology Consultation. 

Clinician groups: Spec: Specialist, Phys: Physician, Med: Medical Student. 

Values represent mean differences in the number of behaviors between Set 2 and Set 1 (Set 2 - Set 1). Positive values indicate 

an increase in the behavior, while negative values indicate a decrease.  

Clinician groups: Spec: Specialist, Phys: Physician, Med: Medical Student. 

P-values are calculated using paired t-tests for each group and prediction category.  

*p < 0.05, statistically significant.
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3.3.2.5. Model Explanation Match Rate 

The match rates of key predictive variables identified by the 

PRIME Solution through LRP analysis and those selected by the 

evaluators were compared (Figure 11). The PRIME Solution, which 

selected 20 variables, showed a higher match rate because of its 

broader selection set. The evaluators, who were limited to choosing 

up to 10 variables, had slightly improved match rates with AI 

assistance (SET2) compared to those without AI assistance 

(SET1). For specialists, physicians, and medical students, the 

match rates with AI assistance increased; however, these 

improvements were not statistically significant (p=0.397, p=0.354, 

and p=0.056, respectively).  
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Figure 11. Comparison of match rates of the key predictive 

variables determined by the evaluator groups and the model. 

 

The match rates of key predictive variables identified by the PRIME Solution 

and those selected by various evaluator groups when making AKI predictions. The 

model, which selects 20 variables, naturally shows a higher match rate because of 

its broader selection set compared to that of the evaluators who were limited to 

choosing up to 10 variables. SET1 represents the non-assisted selection (SET1), 

and SET2 indicates AI-assisted selection (SET2). 
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3.4. Discussion 

This study demonstrated the capacity of PRIME Solution to 

enhance AKI prediction by integrating AI into CDS systems, 

benefiting clinicians with various expertise levels. Prior to the 

integration of AI technologies, AKI risk prediction was based on 

statistical methods and baseline patient data collected before clinical 

events or interventions. Recent advancements in AI have 

revolutionized this approach by incorporating not only baseline data 

but also dynamic real-time data collected during hospitalization, 

thereby significantly improving predictive capabilities [59]. Unlike 

previous studies that used traditional statistical models [60,61], our 

approach leveraged the ResNet architecture, which is specifically 

tailored to capture temporal patterns in time-series data. This 

advanced CNN model effectively modeled the evolving nature of 

patient data collected during hospitalization, thereby improving the 

performance of AKI risk prediction. However, the inherent 

complexity of deep learning models, often referred to as the “black 

box” problem, limits transparency in the decision-making 

processes [62]. To address this, LRP was utilized and offered 

interpretable insights regarding the predictions of the model by 

identifying the most influential variables. This not only mitigated the 

“black box” issue but also increased user trust and supported more 

informed clinical decisions.  

Although numerous studies have developed AKI prediction 
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models, evaluations in the context of physician decision-making are 

scarce. One study directly compared the performance of an AKI 

prediction model with that of physicians at the time of admission to 

the intensive care unit and reported areas under the receiver-

operating characteristic curve of 0.80 for physicians and 0.75 for 

the model [63]. Our study further compared predictive metrics for 

AKI prediction with and without AI support among specialists, 

physicians, and medical students. This comprehensive investigation 

illustrated that AI enhanced decision-making in clinical settings, 

significantly improving predictive performance and efficiency among 

those with various levels of medical expertise. 

The PRIME Solution was designed with a strong emphasis on 

detecting the onset of AKI, a critical factor for early intervention. 

This focus resulted in high recall (78.6%), effectively identifying 

patients who actually developed AKI, but the lower precision 

(27.5%) indicated a higher occurrence of false alarms. This trade-

off demonstrates the ability of the model to detect potential AKI 

cases while highlighting the need for refinement to reduce 

unnecessary alerts without compromising sensitivity. 

Integrating the PRIME Solution into AKI prediction significantly 

improved prediction performance, especially recall across all groups. 

Specialists and medical students demonstrated improvements in F1 

scores, indicating a better balance between precision and recall. 

However, these improvements came with decreased specificity, as 
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the model prioritized identifying true positives even at the risk of 

increasing false positives. This approach was used to ensure that 

potential AKI cases were not missed, enabling early intervention. 

Interestingly, AI assistance had varying impacts depending on the 

evaluator’s expertise level. Specialists showed a substantial 

improvement in recall and F1 scores while maintaining higher 

accuracy than the AI model, indicating that they effectively 

integrated AI support with their clinical judgment. Medical students 

also demonstrated substantial improvements; however, their 

performance was more similar to that of the AI model, suggesting 

that they relied more heavily on the AI’s recommendations without 

critically evaluating them to the same extent as more experienced 

clinicians. Physicians exhibited the most individual variability: the 

performance of some improved with AI assistance, whereas that of 

others declined. These findings align with research on human-AI 

collaboration, revealing that the benefits of AI support depend on 

users’ expertise [64]. Experts may process AI explanations with 

less cognitive load by drawing on their subconscious domain 

knowledge, potentially allowing them to better assess AI 

predictions’ uncertainty and accuracy. Conversely, those with less 

expertise might struggle to extract meaningful insights from AI 

explanations [65].  

The PRIME Solution’s prediction outcomes significantly 

influenced predictive performance and clinical behavior. When AI 
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predicted AKI occurrence, recall markedly increased, especially 

among specialists (from 36.4% to 77.3%), suggesting that AI 

predictions can effectively guide clinicians in identifying potential 

AKI cases, thereby improving early interventions. Conversely, 

precision and F1 scores improved for non-AKI predictions, 

highlighting AI’s role in supporting more accurate negative 

diagnoses and its potential use as a screening tool to exclude low-

risk patients. Additionally, PRIME Solution led to increased clinical 

actions when predicting AKI occurrence, particularly among 

specialists and medical students. This increase in clinical action 

selections is likely to translate into better patient outcomes, such as 

higher recovery rates and reduced AKI severity. This proactive 

approach allows for timely interventions, which are critical when 

managing AKI. Future studies should focus on quantifying these 

impacts using specific clinical metrics [66,67]. It is important to 

note that the selective improvement in performance, varying with 

both the presence and content of AI predictions, strengthens the 

argument that PRIME Solution genuinely enhanced clinical 

decision-making. Although the sample size was limited, the 

observed decline in predictive performance when AI predictions 

were not provided suggests that the results of this study were not 

merely a consequence of learning effects associated with repeated 

evaluations. 

PRIME Solution demonstrated practical benefits in clinical 
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settings, such as decreased average review duration, with the most 

significant time savings observed in non-AKI cases (73.4 to 62.1 

seconds, p<0.001) compared to cases where AKI was predicted 

(74.2 to 68.3 seconds, p=0.039). This efficiency gain aligns with 

previous studies [68,69] and underscores the practical benefits of 

AI assistance, allowing clinicians to allocate more time to complex 

cases and other critical tasks. The reduction in review time with AI 

assistance is particularly valuable in urgent clinical scenarios in 

which quick and accurate decision-making is necessary. This 

efficiency can enhance overall clinical workflow, particularly in 

time-sensitive situations. By streamlining the prediction process, 

AI-CDS systems can potentially alleviate clinical load, enabling 

faster decisions without compromising prediction accuracy [66,70]. 

Furthermore, the match rates of key predictive variables showed a 

slight improvement with AI assistance, although the difference was 

not statistically significant (specialists: p=0.397; physicians: 

p=0.354; medical students: p=0.056). This suggests that AI can 

help clinicians select more relevant variables, potentially leading to 

more informed and accurate assessments. However, the methods of 

presenting AI insights, such as specific interface designs or 

visualization techniques, need further refinement to enhance this 

aspect more effectively. 

This study has limitations inherent to its design and 

methodology. The single-center nature raises questions about the 
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generalizability of the findings. Differences in patient demographics, 

clinical practices, and healthcare infrastructures across institutions 

may lead to variable outcomes when implementing the PRIME 

Solution elsewhere. Additionally, the study’s reliance on a relatively 

small sample of 100 patients and a limited number of evaluators 

may not provide a comprehensive overview of the effectiveness 

across broader clinical settings. Variability in baseline AKI 

assessment accuracy among evaluators with different expertise 

levels introduces another layer of complexity that potentially 

influences the perceived impact of the PRIME Solution. Moreover, 

the study did not fully explore the dynamic nature of clinical 

environments, where patient conditions and clinical decision-

making factors can evolve rapidly, limiting the applicability to real-

world settings. Finally, our AI model’s focus on high sensitivity led 

to decreased specificity, resulting in more false positives. While 

high recall is critical for early detection and prevention of AKI, this 

approach could increase clinician workload and potentially lead to 

alert fatigue in practice, compromising the model’s effectiveness. 

In conclusion, our study illustrated the promising role of AI in 

improving the prediction of AKI, particularly through enhancements 

in recall and efficiency. Nonetheless, integrating AI into clinical 

practice must be approached with caution, ensuring that such 

systems augment clinicians’ judgment without undermining it. 

Future research should focus on refining AI models to achieve an 
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optimal balance between sensitivity and specificity, explore the 

psychological and behavioral impacts of AI on clinical decision-

making, and develop educational strategies to maximize the benefits 

of AI-CDS systems across all levels of medical expertise. 

Additionally, future studies should include multicenter trials with 

larger patient cohorts and diverse hospital types, patient 

demographics, and clinical practices to validate the model across 

various healthcare settings. Furthermore, they should aim to 

develop AI models tailored to specific clinical contexts and consider 

differences in the prevalence of AKI and its outcomes in various 

clinical settings, such as medical and surgical intensive care 

units [71]. The different etiologies of AKI, including sepsis, surgery, 

and contrast agents should also be evaluated [50,72,73]. 

Addressing potential barriers to clinical implementation is crucial. A 

key consideration is the dynamic nature of clinical practice, where 

preventive interventions initiated based on AI predictions could 

alter the predicted outcomes. For instance, when the model predicts 

high AKI risk, clinicians might implement preventive measures such 

as fluid management or discontinuation of nephrotoxic agents, 

potentially averting the predicted event. This intervention effect 

needs to be carefully considered during implementation. 

Additionally, developing user-friendly interfaces that provide 

intuitive visualizations and clear explanations of AI predictions, and 

implementing feedback mechanisms for continuous improvement, 
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are important for successfully integrating AI models such as PRIME 

Solution into routine clinical practice. The dynamic interplay 

between AI and human judgment revealed in this study provides 

valuable insights into the future of healthcare, in which AI and 

clinicians work synergistically to improve patient outcomes.  
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Chapter 4. Conclusions 

This research explored data-driven approaches in nephrology 

through two complementary studies: an investigation of 

environmental factors affecting primary glomerulonephritis and an 

examination of artificial intelligence applications in acute kidney 

injury prediction. These studies advance our understanding of 

kidney diseases through different analytical approaches. 

The first study examined links between air pollution exposure 

and renal function deterioration in primary glomerulonephritis 

patients. Elevated levels of PM10, PM2.5, CO, and NO2 were 

associated with increased risk of renal function deterioration, with 

particulate matter showing the strongest and most consistent 

effects. These findings highlight the importance of considering 

environmental factors in chronic kidney disease progression and 

suggest the value of incorporating air quality monitoring in long-

term kidney disease management strategies. 

The second study evaluated the effectiveness of artificial 

intelligence in acute kidney injury prediction through the PRIME 

Solution model. This AI-based clinical decision support system 

showed improvements in predictive performance across different 

levels of medical expertise, particularly in recall and efficiency. The 

results indicated that while AI assistance enhanced overall 

prediction accuracy, its impact varied based on clinical expertise 
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level, with specialists demonstrating the most effective integration 

of AI recommendations with their clinical judgment. 

The combination of these studies adds to the growing body of 

knowledge in data-driven nephrology. By examining primary 

glomerulonephritis and acute kidney injury, this research provides 

insights into kidney disease management through different 

analytical approaches. These studies demonstrate diverse 

applications of data science in medical research, from statistical 

modeling to artificial intelligence-based prediction. Both studies 

suggest practical implications for patient care, from consideration of 

environmental risk factors in primary glomerulonephritis to the 

implementation of early prediction systems for acute kidney injury. 

These findings support the potential value of data-driven 

approaches in nephrology and suggest that future kidney disease 

management strategies may benefit from incorporating both 

environmental risk factor monitoring and AI-assisted clinical 

prediction systems. This integrated approach could contribute to 

the development of prevention strategies and patient care across 

the spectrum of kidney diseases. 

※ In the preparation of this dissertation, language assistance 

was provided by AI tools (ChatGPT and Claude). All AI-generated 

content was thoroughly reviewed and edited, with the author 

maintaining full responsibility for the entire content of this work. 
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Abstract in Korean 

급성 및 만성 신장질환은 현대 의학과 전 세계 보건의료 시스템이 

직면한 주요 과제이다. 신장 기능 저하의 진행에는 다양한 병리학적 요

인이 기여할 수 있어, 이러한 질환들의 효과적인 관리를 위해서는 다양

한 위험 요인에 대한 이해와 함께 견고한 예측 전략의 개발이 필요하다. 

신장학 분야에서 시계열 데이터의 중요성이 점차 부각되고 있으며, 이는 

질병 진행 추적과 예방 전략 수립에 핵심적인 역할을 한다. 고급 분석 

기법과 인공지능을 활용한 시계열 데이터의 심층 분석은 신장질환의 예

측과 모니터링에 혁신적인 접근 방식을 제공하여, 환자 진료의 질과 의

료 시스템의 효율성을 향상시킬 수 있는 잠재력을 보여준다. 본 연구는 

두 가지 연구를 결합했다: 하나는 일차성 사구체신염에서 신장 기능에 

영향을 미치는 환경적 요인을 조사한 연구이고, 다른 하나는 급성 신장 

손상 예측에 기계학습을 적용한 연구로, 이를 통해 다양한 유형의 신장

질환에서 데이터 기반 접근법에 대한 포괄적인 관점을 제시한다. 

(1) 대기질과 신장 건강: 일차성 사구체신염에서 PM10, PM2.5, CO, 

NO2가 신장 기능에 미치는 영향 평가 

연구 배경: 대기오염 노출과 심혈관 질환, 당뇨병과 같은 만성질환 

간의 관계는 광범위하게 연구되어 왔으나, 면역 매개성 신장 질환인 일

차성 사구체신염(GN)에 대한 구체적인 영향은 아직 충분히 이해되지 

않았다. GN의 발생률이 증가하고 대기질과의 연관성에 대한 연구가 부

족한 점을 고려하여, 일차성 GN 환자의 신장 기능에 대한 대기오염 물

질의 장기적 영향을 조사했다. 

연구 방법: 서울대학교병원과 분당서울대학교병원에서 진단받은 일
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차성 GN 환자 1,394명을 대상으로 후향적 코호트 분석을 수행했다. 시

변 Cox 회귀분석과 선형혼합모형(LMM)을 사용하여 연평균 대기오염 

수준이 신장 기능 저하(RFD)와 추정 사구체 여과율(eGFR) 변화에 미

치는 영향을 분석했다. 여기서 RFD는 지속적으로 eGFR이 60 mL/min 

per 1.73 m² 미만인 상태로 정의했다. 

연구 결과: 평균 5.1년의 관찰 기간 동안 350명의 참가자가 RFD를 

보였다. 인구통계학적 변수와 건강 변수를 고려한 후에도, 대기오염 물

질의 사분위수 범위(IQR) 수준 증가—PM10(직경 10마이크로미터 이하 

입자, HR 1.389, 95% CI 1.2-1.606), PM2.5(직경 2.5마이크로미터 이

하 입자, HR 1.353, 95% CI 1.162-1.575), CO(일산화탄소, HR 1.264, 

95% CI 1.102-1.451), NO2(이산화질소, HR 1.179, 95% CI 1.021-

1.361)—는 RFD 위험 증가와 유의한 연관성을 보였다. 또한 PM10, 

PM2.5, CO 노출은 eGFR 감소와 연관성을 보였다. 

결론: 본 연구는 일차성 GN에서 대기오염 노출과 신장 기능 손상 

간의 실질적인 연관성을 입증했으며, 면역 매개성 신장질환의 병리에서 

환경적 결정 요인의 중요성을 강조한다. 

 

(2) 임상 의사 결정 지원 시스템으로서의 급성 신장 손상 예측 모

델 검증 

연구 배경: 급성 신장 손상(AKI)은 즉각적인 중재가 필요한 중요한 

임상 상태이다. 본 연구진은 AKI를 예측하기 위한 PRIME Solution이라

는 인공지능(AI) 모델을 개발하고, 임상의의 예측 능력 향상에 대한 기

여도를 평가했다. 

연구 방법: PRIME Solution은 3차 의료기관의 183,221건의 입원 



 

９８ 

기록(2013-2017)을 사용하여 잔차 블록이 있는 합성곱 신경망으로 개

발되었으며, 다른 3차 의료기관의 4,501건의 입원 기록(2020-2021)

으로 외부 검증을 실시했다. 응용 평가를 위해 후자 병원의 환자 100명

(AKI 사례 15건 포함)의 후향적 수집 데이터를 사용하여 전향적 평가

를 수행했다. AKI 예측 성능은 전문의, 일반의, 의과대학생 간에 AI 지

원 유무에 따라 비교했다. 

연구 결과: AI 지원 없이는 전문의가 가장 높은 정확도(0.797)를 

보였고, 그 다음으로 의과대학생(0.619)과 PRIME Solution(0.568) 순

이었다. AI 지원은 전반적인 재현율(61.0%에서 74.0%)과 F1 점수

(38.7%에서 42.0%)를 향상시켰으며, 평균 검토 시간을 단축시켰다

(73.8초에서 65.4초; p<0.001). 그러나 전문성 수준에 따라 그 영향은 

달랐다. 전문의가 가장 큰 향상을 보였고(재현율: 32.1%에서 64.3%; 

F1: 36.4%에서 48.6%), 의과대학생의 성능은 향상되었으나 AI 모델과 

더 유사한 수준으로 수렴했다. 또한 AI 지원의 효과는 예측 결과에 따라 

달랐는데, AKI로 예측된 사례에서는 재현율이, 비AKI로 예측된 사례에

서는 정밀도, F1 점수, 검토 시간 단축(73.4초에서 62.1초; p<0.001)이 

더 큰 향상을 보였다. 

결론: AI 지원으로 AKI 예측이 향상되었으나, 그 개선 정도는 사용

자의 전문성에 따라 차이를 보였다. 

 

결론적으로, 이 연구들은 신장학 분야에서 데이터 기반 접근법의 잠

재력을 강조한다. 첫 번째 연구는 대기오염과 만성 신장 기능 저하 간의 

명확한 연관성을 확립하여 장기적인 신장질환 관리에서 환경적 요인 고

려의 중요성을 강조했다. 두 번째 연구는 급성 신장 손상 예측에서 AI의 
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가치를 입증하여 신속한 중재를 위한 임상 실무에서 고급 분석의 잠재력

을 보여주었다. 이러한 발견들은 급성 손상에서 만성 질환에 이르기까지 

신장질환 전반에 걸쳐 환자의 예후와 삶의 질을 개선할 수 있는 더욱 표

적화된 중재와 개별화된 치료 전략의 길을 열어준다. 

 

주제어: 만성 신장질환, 급성 신장 손상, 대기 오염, 기계 학습, 시계

열 분석, 사구체신염 

학  번: 2021-33712 
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