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Abstract 

Low birth weight preterm infants admitted to neonatal intensive care units (NICUs) 

represent a high-risk group with high mortality and morbidity rates. These preterm 

infants require continuous physiological monitoring and intensive clinical 

intervention. Early diagnosis and prognosis prediction are critical for improving 

survival and long-term outcomes in preterm infants. To address this need and support 

timely clinical decisions, recent research has extensively focused on developing 

predictive models and identifying clinical indicators from continuous vital sign data. 

However, machine learning and deep learning models applied to NICU preterm 

infant data frequently fail to demonstrate statistically significant superiority over 

logistic regression models, often exhibiting suboptimal performance during external 

validation. These limitations result from several challenges. First, institutional and 

research-specific variations in physiological signal acquisition and processing 

methodologies impede the generalizability of predictive models. Second, 

considerable heterogeneity in gestational age and the frequency of clinical 

interventions across institutions and care providers complicates the extraction of 

stable, reliable indicators. Furthermore, studies using continuous vital signs data in 

preterm infants are limited by considerable constraints due to high computational 

burdens and the restricted applicability of time series analysis methods. 

This study proposed a scalable methodology for continuous vital sign analysis 

to address analytical complexities resulting from preterm infant characteristics, 

computational resource demands, constraints in time series analysis application, and 

existing research limitations. Our methodology efficiently integrated diverse time 

series analysis methods from various research domains. This enables the 

identification of clinically relevant diagnostic and prognostic factors from 

continuously acquired large-scale vital sign data and supports in-depth exploration 
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of novel physiological factors. We developed a scalable feature extraction approach 

to derive previously uncharacterized continuous vital sign-based features, applying 

time series analysis methods to capture dynamic features reflective of NICU-specific 

physiological patterns often challenging to extract from electronic medical record 

(EMR) data. Additionally, by transforming advanced false discovery rate (FDR) 

control and clinical trial emulation methods into partitionable algorithms, the 

proposed methods improved both the scalability and robustness of identified clinical 

indicators. These methods, by enabling parallel and distributed computing, 

substantially enhance computational efficiency and overall scalability for large-scale 

multicenter clinical studies, aligning with current high-performance computing 

paradigms. 

To validate the proposed methodology, we conducted several studies using the 

methods that were implemented by the framework. We initially performed 

simulation analyses to determine that our proposed FDR control method provides 

superior control and computational efficiency compared to traditional methodologies. 

Subsequently, we developed predictive models for sepsis and mortality, critical 

complications in preterm infants, based on the proposed framework. These models 

demonstrated robust classification performance even in external validation datasets. 

We further validated that continuous physiological signal-based predictive models, 

developed using the proposed framework, can contribute to clinical decision-making. 

Lastly, by identifying the novel predictor for intraventricular hemorrhage (IVH) via 

time series analysis methods from other research domains, we demonstrated the 

capacity of the proposed methodology to discover new clinical indicators. 

This study provides several notable contributions. We systematically derived 

high-resolution clinical indicators from continuous vital sign data, thereby 

expanding the scope and precision of feature extraction and selection methodologies 
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for risk factor identification and prediction in preterm infants. We also developed a 

time series analysis framework that accurately reflects the physiological 

characteristics of preterm infants, consequently mitigating limitations inherent in 

existing continuous vital sign analysis methodologies for this population. 

Furthermore, through external validation of models developed using our proposed 

methodology, we enhanced the reliability and reproducibility of predictive models 

within the NICU. Finally, via in-depth analysis of novel physiological predictors, we 

aimed to enhance model interpretability and clinical utility by establishing links 

between physiological characteristics and significant clinical symptoms, such as 

autonomic nervous system dysfunction. Overall, this study addresses existing 

computational and analytical constraints, thereby improving the practical 

applicability of continuous vital signs analysis research. We anticipate our 

methodology will support enhanced research convenience and facilitate the 

resolution of critical clinical questions. Moreover, it is expected to advance 

prognostic assessment in preterm infants and contribute to the development of 

dependable and clinically actionable artificial intelligence models within the NICU 

environment.  
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Chapter 1. Introduction 
 

 

1.1. Clinical Background: Low Birth Weight 

Preterm Infants in a Neonatal Intensive Care 

Unit 

 

1.1.1. Preterm and Low Birth Weight Infants 

Preterm birth, defined as delivery before 37 weeks of gestation age (GA), remains a 

major global health challenge and a leading cause of neonatal morbidity and 

mortality [1]. Infants born preterm are physiologically immature and clinically 

vulnerable, with a heightened risk of developing life-threatening complications due 

to underdeveloped organ systems. 

Preterm infants require substantial medical support to survive in the 

extrauterine environment due to the immaturity of multiple organ systems, including 

the lungs, brain, cardiovascular system, and gastrointestinal tract. In utero, fetal 

organs undergo progressive maturation to achieve functional competence necessary 

for extrauterine life. In term neonates, this maturation typically enables spontaneous 

respiration, effective pulmonary gas exchange, metabolic homeostasis, autonomic 

regulation of cardiovascular function, neurologic responsiveness to sensory stimuli, 

coordinated gastrointestinal motility with enzymatic activity, and the presence of 

primitive reflexes such as sucking, grasping, and rooting [1, 2]. 

Preterm infants with a higher degree of immaturity are associated with 

physiological vulnerability, leading to a steep increase in the risk of both mortality 

and short- and long-term morbidity. Therefore, delivery decisions and treatment 
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strategies, including initiation of active neonatal treatment, or timing and intensity 

of interventions, must be guided by the infant’s level of maturity, underscoring the 

need for validated clinical indices and objective measures to assess maturity. 

GA has been the most used indicator and serves as a practical proxy measure 

for developmental maturity. Preterm infants were defined as belonging to one of 

three gestational age categories: extremely preterm (less than 28 weeks), very 

preterm (28 to 31 weeks), and moderately preterm (32 to 36 weeks) [1, 3]. These 

classifications are associated with clinical outcomes, as survival rates and the 

incidence of complications [3]. However, GA based classifications alone do not fully 

capture the spectrum of neonatal immaturity. Specifically, GA does not determine 

for infants who are born too early versus those who are small for gestational age 

(SGA), nor does it address cases of functional immaturity in full-term infants. For 

this reason, additional proxy measures are required to complement GA when 

evaluating neonatal maturity. 

 

1.1.2. Mortality and Complications of Preterm Infants in 

NICU 

Recent advances in medical technology and ongoing research have led to significant 

progress in perinatal and neonatal intensive care, resulting in substantial 

improvements in overall survival rates [4-6]. Nevertheless, even at present, low birth 

weight preterm infants have higher risks of morbidity and mortality compared to 

term infants. Globally, the incidence of preterm birth has remained relatively stable 

(9.8% in 2010 and 9.9% in 2020). As of 2019, mortality related to preterm birth 

complications accounted for 17.7% of all neonatal deaths worldwide [7, 8]. 

Compared with outborn pre-term infants, those admitted to NICUs generally 

have significantly higher survival rates. Consequently, the spectrum and causes of 
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death differ substantially between the overall population of preterm infants and those 

who receive intensive care. In addition, there is considerable variation in neonatal 

outcomes depending on country, institutional NICU level, available medical 

resources, and the quality of perinatal and neonatal care. These disparities are further 

compounded by differences in clinical definitions, diagnostic thresholds, and 

reporting standards for neonatal complications and causes of death. 

The primary complications and causes of death for preterm infants in the NICU  

vary slightly by region and institution. However, respiratory failure, infection, and 

neurological injury are consistently identified complications. 

In the United States, a study of extremely preterm infants admitted to NICUs 

between 2013 and 2018 reported an approximate 20% incidence of late-onset sepsis 

(LONS) in infants born at 22–28 weeks' gestational age. During the same period, 

bronchopulmonary dysplasia (BPD) occurred in 8.0%, intracranial hemorrhage in 

14.3%, and neurodevelopmental impairments affected 29.3% (moderate) and 21.2% 

(severe) of these infants. While survival rates significantly increased compared to 

the 2008–2012 period, the incidence of neurodevelopmental impairments remained 

unchanged [9]. 

Due to the heterogeneity in NICUs, clinical practice, and data classification 

systems, it remains difficult to establish universally accepted definitions for major 

complications of prematurity. For instance, diagnostic criteria for conditions such as 

intraventricular hemorrhage (IVH), BPD, necrotizing enterocolitis (NEC), and 

sepsis may vary across institutions and countries in terms of imaging modality, 

timing of diagnosis, and clinical thresholds for intervention. Moreover, differences 

in gestational age thresholds for viability and in the ethical framework guiding 

resuscitation and intensive care practices influence the clinical course and reported 

outcomes. As a result, international comparisons of morbidity and mortality data are 
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often limited by inconsistency in terminology and methodology. 

This variability significantly impacts the ability to generate standardized 

epidemiologic profiles of preterm complications, hindering efforts to implement 

globally harmonized quality improvement initiatives and evidence-based policy 

recommendations. Therefore, the interpretation of both short- and long-term 

outcomes in NICU-admitted preterm infants must be contextualized within the 

specific healthcare environment, gestational age distribution, and national clinical 

guidelines. 

 

 

1.1.3. Early Detection in the NICU: Importance and 

Challenges 

Early detection and timely intervention during clinical deterioration can significantly 

improve the prognosis and survival rates of preterm infants. There is growing 

evidence and research supporting that early diagnosis and detection of patient 

deterioration in the NICU can prevent severe complications and improve clinical 

outcomes, ultimately leading to further improvements in preterm infant survival rates. 

One of the primary subjects of research focused on early detection is late-onset 

sepsis. Sepsis is a complication that arises from infection and remains one of the 

most severe complications. Despite advances in neonatal care, sepsis remains a 

leading contributor to morbidity and mortality in NICUs. It has been reported that 

approximately 20% of deaths among infants weighing less than 1,500g were 

attributable to sepsis. Moreover, the risk of death is nearly threefold higher in infants 

diagnosed with sepsis compared to those without infection [10]. Neonatal sepsis is 

typically classified into two categories: early-onset sepsis (EOS), occurring within 

the first 72 hours of life, and LONS, which presents between 72 hours and 120 days 
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after birth [10, 11]. EOS is primarily the result of intrauterine infection or vertical 

transmission of pathogens during labor and delivery, whereas LONS may arise from 

both vertical transmission and horizontal acquisition of bacteria from healthcare 

personnel or the NICU environment. 

EOS can be prevented in up to 80% of cases through the administration of 

intrapartum antibiotic prophylaxis [12]. In contrast, no established prophylactic 

strategy or standardized guidelines currently exist for early identification of LONS, 

particularly in asymptomatic infants. The definitive diagnosis of LONS requires 

blood culture testing; however, results typically take 48 to 72 hours. To avoid 

treatment delays, empirical antibiotic therapy is often initiated before confirmation. 

Even when blood cultures are negative, antibiotics are frequently continued if 

clinical symptoms of LONS are present, due to the potential for false-negative 

culture results. However, this approach results in antimicrobial resistance, exposing 

infants to the risks associated with prolonged antibiotic use, and increases healthcare 

costs. Furthermore, preterm infants have a limited blood volume available for 

sampling, and blood culture is an invasive procedure with a high rate of false-

negative results.  

 

 

1.2. Analytic Methods and Frameworks for Preterm 

Infants in NICU 

 

Predictive tools and analytical models have been developed to support early 

recognition of clinical deterioration and to guide prognostic assessment and timely 

intervention in preterm infants, beginning at the time of delivery and extending 

throughout the NICU stay. These models vary in clinical objective, timing of 
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assessment, and types of data utilized. A substantial number of vital signs-based 

approaches rely on continuous monitoring of vital signs, most derived from 

electrocardiograms (ECGs) and linked with electronic medical records (EMRs), to 

detect subtle physiological changes that result from physiological instability. 

However, the high computational demands and specialized equipment required for 

ECG-based approaches limit their applicability across all healthcare settings. 

Additionally, EMR data are often recorded at low temporal resolution and may be 

influenced by clinician-driven documentation bias. In response to these limitations, 

an increasing number of studies investigate the use of continuous vital sign data 

obtained from patient monitoring systems as a complementary approach. 

 

1.2.1. ECG Based Approach 

The ECG is a fundamental diagnostic tool that measures the heart's electrical activity 

during cardiac cycles. ECGs are recorded by processing and amplifying 

depolarization and repolarization signals, derived from the differential voltage 

between two points relative to a single ground reference. Standard 12-lead ECGs 

measure these differential voltages from various angles around the heart. 

While the typical adult QRS complex duration ranges from 60 to 100 

milliseconds, the neonatal QRS complex is comparatively shorter, spanning 30 to 94 

milliseconds. Consequently, some characteristics and normal ranges of neonatal 

ECGs differ from those in adults. Furthermore, certain features may necessitate the 

analysis of high-frequency data in preterm infant population. 

Heart rate variability (HRV) is one of the most widely used analytical methods. 

It quantifies the variation in RR intervals—or normal-to-normal intervals—between 

QRS complexes on ECG, which reflects autonomic nervous system function and 

maturation [13-15]. In particular, decreased HRV correlates with severe 
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inflammation and infection, and many studies have been therefore applied HRV as 

an analytical method for the early identification of LONS and NEC in neonates.[16, 

17] Griffin et al[18, 19] presented the heart rate characteristics (HRC) index, which 

used heart rate variability and transient decelerations to identify early detection of 

neonatal sepsis. Furthermore, a multicenter, prospective, randomized controlled trial 

of the HeRO monitor, which is based on HRC analysis, demonstrated an approximate 

22% reduction in all-cause mortality in the patient group that received HRC index 

[20]. Research consistently reports a strong association between vital sign instability 

in preterm infants and various adverse outcomes, including NEC, BPD, IVH, 

retinopathy of prematurity (ROP), cerebral palsy, and delayed early cognitive 

development. Specifically, HRV has shown a high correlation with these morbidities. 

[21-27]. However, these studies investigating the association between HRC index 

and morbidities other than LONS and NEC are often limited to single-center designs 

with small patient cohorts, requiring further research. Furthermore, existing ECG-

based heart rate studies, including the HeRO system, demand substantial 

computational resources and often require specialized installation, hindering easy 

accessibility across multiple centers. An additional consideration for the HRC index 

is that its values can be influenced by external factors like surgical procedures and 

interventions, not solely a specific morbidity. Therefore, further research is needed 

to explore the relationship between HRC, other vital signs, and comprehensive 

clinical data. 

 

1.2.2. EMR-based Approaches 

The development of medical information systems and the widespread 

implementation of EMR have markedly increased the volume and accessibility of 

clinical and physiological data in NICUs. Research on preterm infants in the NICU 
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has often been constrained by small sample sizes and single-center designs, limiting 

external validation and broader applicability. The introduction of publicly accessible 

databases, such as MIMIC-III (Medical Information Mart for Intensive Care) [28], 

provides structured NICU EMR data that support validation efforts and enable 

multicenter analyses. As a result, research efforts utilizing these data sources have 

expanded, particularly in the application of artificial intelligence (AI) to detect and 

predict critical events and morbidities in preterm infants. 

Consequently, many studies in this area have used EMR data due to its 

availability and the practical advantage of not requiring additional equipment. EMR 

data are typically available for retrospective analysis and are structured for algorithm 

development. However, several limitations in using EMR data for predictive 

modeling have been identified. One major limitation is the low temporal resolution 

of vital signs in EMR systems. In typical clinical workflows, vital signs may be 

recorded every 15 to 60 minutes, depending on institutional practices. This frequency 

is insufficient to capture the minute-to-minute physiological variability that can 

precede deterioration in preterm infants [29]. As a result, predictive models trained 

on EMR data may fail to detect early warning signs or subtle changes that are critical 

in a neonatal context [30]. 

Another issue is the subjectivity in EMR documentation. Data entries are often 

made at the discretion of the clinician, reflecting specific moments tied to care 

decisions or clinician awareness rather than continuous patient status [31, 32]. This 

introduces potential bias, making the data less representative of the full clinical 

picture and more influenced by provider behavior, workload, and institutional 

routines. Consequently, the validity of predictive algorithms based solely on EMR 

data may be limited.  

Overall, while EMR-based approaches offer accessibility and convenience, 
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they are inherently limited by their temporal granularity and reliance on clinician 

input. Further research is needed to determine the most effective ways to leverage 

both data types in building robust, clinically useful predictive tools for neonatal care. 

 

1.2.3. Continuous Vital signs-based Approaches 

Although survival rates in NICUs have improved significantly over the past several 

decades, the information provided by conventional medical technologies have 

reached its limitations [33]. The limitations of traditional EMR data analysis have 

led to a significant increase in the perceived need for continuous vital sign analysis 

research since 2020 [27]. In response, there has been increasing interest in the use of 

continuous physiological data collected through bedside monitoring systems [27, 30, 

34, 35]. These systems capture vital signs such as heart rate, respiratory rate, blood 

pressure, and oxygen saturation at high sampling rates, often on a second-by-second 

sampling period. This automated, human-independent data acquisition allows for 

higher temporal resolution and improved objectivity when compared to EMR 

records. 

Recent studies suggested that incorporating continuous monitoring data into AI-

based prediction models can improve the accuracy and timeliness of detecting 

adverse events, such as sepsis, apnea, and IVH [30, 36-38]. These findings imply a 

high potential for these approaches to support earlier intervention, particularly in 

high-risk neonatal populations. 

Consequently, numerous studies are actively investigating features associated 

with severe morbidity and mortality in preterm infants. However, their 

implementation also raises new challenges. These include handling large volumes of 

time-series data, filtering signal noise, ensuring interoperability between different 

monitoring systems, and developing standards for integrating predictive outputs into 
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clinical decision-making processes. One of the most significant limitations is that 

most of these studies are unable to fully utilize observation windows exceeding one 

hour due to computational burden. Letzkus, et al. [39] investigated the association 

between low heart rate variability and cerebral palsy, developing a multivariable 

logistic regression classifier using 1 Hz heart rate from continuous vital signs. 

However, due to computational burden, they calculated features by extracting 

median values from 10-minute heart rate segments. Similarly, Niestroy, et al. [35] 

attempted to develop a model predicting all-cause mortality using numerous features 

generated from randomly extracted values within 10-minute segments for reducing 

computational burden. Peng, et al. [34] also generated features from continuous vital 

signs, similar to other studies, at a 0.5 Hz sampling rate. Yet, instead of utilizing 

observation windows exceeding one hour, their approach involved segmenting data 

into 10-minute intervals, calculating features, and then applying a grand mean. 

Consequently, this implies two key concerns: the potential for missing nuanced 

physiological signals embedded in continuous preterm infant vital signs, and the 

resulting inter-study variability in quantified features due to inconsistent aggregation 

approaches [40]. 

 

 

1.2.4. Feature Selection Methods for High-Dimensional 

Data  

Feature selection is the process of selecting a subset of relevant features that are 

strongly associated with specific response variables from a high-dimensional feature 

set. By selecting a subset of relevant features, feature selection generally improves 

the efficiency of subsequent analyses, enhances the reproducibility of findings, and 

increases interpretability by minimizing the variables requiring further analysis 
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about clinical implications [41]. Consequently, this methodology is widely utilized 

across various research domains, particularly in studies involving preterm infants 

within the NICU [42-48]. Specially, many studies for developing predictive models 

have applied a feature selection approach for several critical objectives: mitigating 

model overfitting, enhancing computational efficiency, and stabilizing model 

performance by filtering out noisy data[42, 43, 49-51].  

Broadly, feature selection methodologies are categorized into filter, wrapper, 

embedded, and hybrid methods [43]. In studies focused on clinical risk factor 

identification, the criteria for selecting or identifying risk factors were often derived 

from existing literature or through expert-driven clinical background. These 

approaches are predominantly utilized in predictive model research to extract the 

most relevant features from large datasets. In NICU research, the selection of a 

specific feature selection technique is often dictated by study characteristics. 

Additionally, within the clinical domain, expert-driven feature selection, which 

involves identifying key clinically relevant indicators, is commonly utilized [46]. 

For filter methods, commonly used approaches include traditional statistical 

techniques such as univariable logistic regression and statistical test-based feature 

selections [52, 53]. Specifically, stepwise feature selection approach is widely used 

in clinical research and practice [54, 55]. More recently, there has been an increasing 

adoption of embedding methods for feature selection, which utilize feature 

importance metrics derived from machine learning models [53, 55, 56].  

Research in feature selection is rapidly advancing, driven by the increasing 

prevalence of data characterized by ultra-high dimensionality. Specifically, the 

number of false positives in feature selection procedures significantly impacts the 

performance of subsequent analyses and predictive models derived from high-

dimensional data. Therefore, the ability to control these false positives has become 
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crucial, leading to recent methodological advancements in False Discovery Rate 

(FDR) control for feature selection methods. The FDR control method controls the 

proportion of false discoveries among rejected null hypotheses (i.e., irrelevant 

features related to specific response variables) to remain below a target level. For 

high-dimensional data in clinical research, the Benjamini-Hochberg (BH) procedure 

[57] and the Benjamini-Yekutieli (BY) procedure [58] have been widely used as 

FDR control methods. One notable recent development in powerful FDR control 

methodologies is the knockoff filter [59]. This method adds synthetic "knock-off" 

features into the dataset, against which the FDR is then rigorously controlled. 

Compared to existing FDR control methods, the Knockoff filter method is more 

general and flexible, providing stable FDR control even when the proportion of null 

features is high. Consequently, several Knockoff filter-based FDR control methods, 

such as Model-X, have been proposed [60, 61]. However, a significant limitation of 

the knock-off technique is its prerequisite for prior knowledge of the data's 

underlying distribution. Applying knockoff filter methods when this distribution is 

unknown carries the risk of FDR inflation [62]. Research is also underway to 

efficiently compute statistics for a large number of features. Notably, recent efforts 

have focused on analyzing U-statistics across distributed servers, specifically 

addressing the statistical-computational trade-off [63]. Despite these advancements, 

most NICU research predominantly utilizes classic stepwise selection methods. 

There's a notable lack of research and feasibility studies on feature selection methods 

designed to efficiently handle the large volume of features derived from continuous 

vital signs. 

One of the primary challenges in studies aimed at identifying risk factors for 

preterm infants in the NICU is the limited number of subjects who meet the inclusion 

criteria, along with the particularly small size of the case group targeted for risk 
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factor analysis. This results in a highly imbalanced class distribution, which 

represents a key challenge in classification-based problem formulations, as outlined 

in the earlier methodology.  

As previously noted, one of the primary challenges in studies aimed at 

identifying risk factors for preterm infants in the NICU is the limited number of 

subjects who meet the inclusion criteria, along with the particularly small. The 

substantial heterogeneity in demographics, institutional measurement practices, and 

external environmental factors among preterm infants in the NICU induced 

significant uncertainty into the theoretical biases of continuous vital sign-based 

features. Current research often attempts to identify key risk factors and predictors 

by ranking features based on p-values from association analyses with specific 

morbidities or mortality. Alternatively, basic feature selection techniques are applied 

for "black box" models such as deep learning and machine learning. A major 

limitation of these approaches is that most are single-institution studies lacking 

external validation, precluding confirmation of performance robustness. 

 

 

1.3. Research Questions and Aims 

Previous research has established that features derived from continuous vital signs 

can offer novel insights to clinicians and provide a foundation for identifying risk 

factors that enable earlier detection of preterm infant deterioration with higher 

sensitivity. However, current continuous vital sign processing and analysis methods 

vary significantly across studies. Furthermore, the analytical techniques applied are 

often limited by computational burden, restricting them to basic statistics, or they 

fail to sufficiently mitigate bias that can arise from single-institution studies. 

Therefore, this study proposed a methodology designed to overcome the 
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limitations of existing continuous vital sign analysis and address the challenges 

associated with identifying novel risk factors. The overall methodological pipeline 

was structured into the following chapters. 

Chapter 2 introduced a continuous vital sign analysis methodology that applies 

diverse domain methods to analyze, filter, and select features strongly associated 

with critical clinical events in preterm infants. This methodology uses a distributed 

computing architecture from its implementation phase, ensuring scalability and 

flexible adaptation for expanding datasets, new risk factors, and model integration 

in future research. Conventional FDR control and emulation methods, especially 

those based on traditional sequential procedures, are exceptionally time-consuming. 

To address this, we proposed partitionable algorithms within our framework. This 

transformation of iterative processes significantly enhances computational efficiency 

and resolves prior limitations in the scalability and flexibility of feature selection and 

analysis methods. By enabling parallel or distributed computing techniques, our 

refined approach aligns with current high-performance computing trends, thereby 

substantially boosting efficiency and overall scalability for larger, multicenter 

clinical studies. 

Chapter 3 focused on identifying key features associated with all-cause 

mortality and late-onset sepsis, two major predictive modeling topics in NICU 

preterm infants. We developed predictive models and validated them using an 

external dataset to confirm the robustness of the methodologies proposed in this 

study. We also investigated whether previously known key features associated with  

sepsis and all-cause mortality were similarly detected, or if our approach identified 

complementary or surrogate features. 

Chapter 4 validated the superiority of continuous vital sign-based features over 

existing EMR-based features in providing insight into patient clinical symptoms. To 
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achieve this, we recalibrated a previously developed extubation readiness model for 

NICU preterm infants within our study. We then confirmed the enhanced 

performance of this predictive model, driven by features identified in our research, 

using our proposed methods. 

Chapter 5 demonstrated the ability of our proposed methodologies to identify 

novel physiological markers for the timely detection of IVH, a critical morbidity in 

preterm infants requiring early diagnosis and intervention. This chapter assessed the 

applicability of diverse cross-domain feature calculation methods in the clinical 

domain and explored how our approach overcomes limitations of traditional case-

control studies for risk factor identification.  
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Chapter 2. Continuous Vital Signs  

Derived Feature Extraction and Analytic 

Frameworks for Identifying Risk Factors 

in Preterm Infants 
 

 

2.1. Introduction 

 

In recent NICU studies, continuous vital signs, sampled at higher frequencies (0.03 

Hz to 2 Hz) than traditional EMR data, are being analyzed for their association with 

major complications and mortality in preterm infants, and for developing predictive 

models [34, 35, 39, 64]. These predictive models demonstrated superior performance 

compared to EMR-based approaches, and comparable accuracy to ECG-based 

predictive models, implying significant clinical potential. These data are being used 

not only for monitoring but also for identifying physiological markers, predictors, 

and risk factors that are not detectable using conventional EMR-based data. 

Even with the significant potential of continuous vital signs, the considerable 

computational demands remain a major challenge to advanced research. For this 

reason, many studies identifying clinically relevant variables are still limited to 

extracting continuous vital sign features based on basic descriptive statistics or 

established measures, such as HRC and HRV. The discovery, development, and 

validation of novel time series analysis methods inherently necessitate significant 

time and computational resources. Consequently, researchers in medical engineering, 

deep learning, and medical statistics dedicate substantial effort to validating newly 

identified or proposed clinical risk indicators and assessing their applicability across 

diverse clinical contexts. Notably, unlike adults, analyzing continuous vital signs in 
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preterm infants requires specific methodological consideration due to the variation 

in their physiological characteristics with developmental maturity. Furthermore, 

analytical challenges are compounded by small patient cohorts, the low incidence of 

major comorbidities and mortality, and the frequently unidentifiable precise onset 

times of adverse clinical events. Therefore, research on analytic methodologies and 

frameworks is essential to accelerate early-stage continuous vital sign studies and 

mitigate the aforementioned challenges. However, current frameworks and 

analytical methodologies within the clinical domain lack the maturity to provide the 

comprehensive understanding required by all stakeholders. 

To address this, some studies have applied time-series feature extraction 

techniques, either domain-specific or domain-agnostic, to derive more informative 

representations of NICU monitoring data [34, 35, 39]. These methods aim to retain 

the temporal complexity of the original signals and improve clinical relevance. 

However, most studies to date have only confirmed previously known features rather 

than identifying new or context-specific ones [34]. Additionally, downsampling 

techniques, such as random selection or averaging (e.g., grand mean), were applied  

to manage the high sampling frequency [30, 34, 35, 39]. While these approaches 

simplify processing, they might result in a loss of temporal resolution and fail to 

capture transient physiological changes. Moreover, the feature selection and analysis 

methods applied in the clinical studies have generally lacked scalability, limiting 

their applicability in larger, multicenter studies or real-time clinical settings. 

This chapter introduces a methodological framework for extracting and 

efficiently selecting novel physiological features that are linked to major 

complications and mortality in preterm infants. Unlike previous studies that 

commonly applied downsampling techniques, this approach supports the full 

temporal resolution of the data to capture subtle physiological dynamics that may be 
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clinically significant. It is specifically designed to support real-time feature 

extraction and analysis in routine clinical settings. To assess its computational 

efficiency, the proposed method was evaluated against established feature selection 

algorithms by comparing processing time and resource usage under equivalent 

feature sets. In addition, the characteristics of the features generated through the 

proposed method will be examined in relation to specific complications and 

mortality outcomes. 

 

 

2.2. Methods 

 

2.2.1. Design Principles 

This study focused on designing and implementing continuous vital signs analytical 

methodologies and frameworks by systematically addressing the identified 

limitations of existing continuous vital signs analysis. Furthermore, we proposed 

algorithms to address analytical challenges resulting from the heterogeneous nature 

of NICU patient populations across countries and institutions, including variations 

in intervention procedures, demographics, and incidence rates of mortality and 

morbidity. 

To mitigate the insufficient accessibility of existing time series analysis 

methods, other valuable analytical techniques, and domain-agnostic feature 

calculations, we applied “off-the-shelf” approaches. In other words, the proposed 

framework addresses the substantial computational demands in clinical domain 

research, particularly those arising from the high-order time complexity associated 

with features combining multiple time series segments (e.g., sample entropy), by 

precomputing all necessary features via seamless libraries integration. These 
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libraries consist of either directly implemented or externally imported essential 

feature calculations. It also offers the flexibility to integrate methods from other 

domains or novel AI models into the clinical setting.  

Continuous vital sign data often yield high-dimensional feature sets, which pose 

significant analytical challenges. Specifically, the multiple comparisons inherent in 

feature selection processes can lead to a very high rate of false positives. Furthermore, 

many feature selection methods require a large number of iterations to converge, 

adding to computational burden. Moreover, analysis is complicated by immaturity 

effects observed in preterm infant populations and avoidable biases frequently 

encountered in observational studies. These biases include immortal time bias, 

depletion of susceptible bias, confounding, and the false discovery problem. To 

address these issues, we implemented several advanced techniques. First, we refined 

and applied state-of-the-art FDR control methods to manage false positives 

effectively. Second, to account for biases common in observational studies, we 

applied an emulation of a matched case-control design. 

Crucially, implementing both FDR control methods and emulation, particularly 

when based on traditional sequential procedures, can be exceptionally time-

consuming. Therefore, we proposed algorithms that refined these two methods by 

transforming traditional iterative algorithms into partitionable algorithms within our 

frameworks, significantly enhancing computational efficiency. This refined 

approach addresses the challenge of limited scalability and flexibility in feature 

selection and analysis methods, which has historically restricted their applicability 

in larger, multicenter clinical studies. Moreover, by enabling the utilization of 

parallel or distributed computing techniques, which align with current trends in high-

performance computing, it substantially enhances computational efficiency and 

overall scalability.  
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2.2.2. Time Series Analysis-based Feature Extraction 

Approach 

Continuous vital sign data, periodically recorded from patient monitors, consists of 

high-frequency, high-resolution numeric measurements of multiple physiological 

parameters, including heart rate, pulse, oxygen saturation, invasive arterial pressure, 

and respiratory rate. These inherent characteristics allow continuous vital sign data 

to be considered a distinct form of time series data. These signals exhibit substantial 

temporal complexity and high dimensionality, making direct interpretation and 

modeling challenging.  

Given the inherent time series characteristics of continuous vital sign data, we 

applied prominent time series analysis methodologies, such as time-domain, 

frequency-domain, linear correlation, and information theory approaches, for feature 

extraction [65-68]. Time series feature-based analysis is a widely used approach 

across most domains, and as a result, extensive research and various implementations 

for feature extraction have already been developed [66]. These methods were 

selected to effectively capture the temporal structure and complexity of high-

resolution physiological time series data, beyond the capabilities of conventional 

analytical approaches to extract clinically meaningful patterns and information that 

may aid early risk assessment and support timely intervention in neonatal care. 

 

2.2.3. Continuous Vital Signs Feature Calculation Methods 

Due to the need to identify subtle, previously unrecognized physiological risk factors 

and predictors of adverse outcomes in preterm infants, this study applied a wide 

range of feature extraction and extraction methods drawn from diverse domains. To 

capture the diverse temporal and statistical characteristics of high-resolution 
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physiological signals, we applied a wide range of time series feature extraction 

techniques grounded in well-established mathematical and statistical principles. 

These features were categorized into the following theoretical classes to ensure both 

interpretability and comprehensive signal representation. 

Descriptive statistical methods were applied to characterize the overall 

distributional properties of the continuous vital signs. These included measures of 

central tendency, dispersion, and higher-order moments (e.g., skewness and kurtosis), 

which capture asymmetrical and tail behavior [69, 70]. These features provide 

essential baselines for identifying abnormal clinical symptoms, such as desaturations 

which may easily be identified by descriptive statistics [69, 71]. These features are 

widely adopted in studies utilizing continuous vital signs, serving as a 

comprehensive framework for physiological data analysis [30, 35, 72]. 

Time-domain analysis methods were implemented to capture local dynamics 

and signal shape characteristics [65, 73]. Features such as the longest consecutive 

runs above or below the mean, first and last positions of local maxima and minima, 

and threshold-based counts were used to quantify signal excursions, volatility, and 

event durations[66, 74]. These properties are particularly relevant in detecting 

transient physiological events, such as apnea episodes or episodic desaturation, 

which may not be evident in aggregated summary statistics. 

We also implemented correlation-based features to model temporal dependence 

and repetitive patterns within the signals [67, 68]. Classical autocorrelation and 

partial autocorrelation functions were used to identify short- and long-range 

dependencies, providing insight into regulatory patterns in cardiorespiratory signals 

[36]. 

Frequency-domain and spectral methods were computed to analyze the 

distribution of power across different frequency bands [67, 68, 75-79]. Fourier 
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analysis and wavelet-based methods were applied to extract both stationary and 

transient periodic components, with the aim of capturing lower-frequency 

characteristics not typically observed in conventional ECG frequency features [13, 

14]. Welch's method [80] was used to estimate power spectral density with reduced 

variance. 

Entropy and information theory-based methods were also applied to quantify 

the regularity, complexity, and unpredictability of the continuous vital sign time 

series [81-83]. Features derived from approximate entropy, sample entropy, 

permutation entropy, and Lempel-Ziv complexity[84] provide estimates of signal 

irregularity based on symbolic representations or probability distributions. These 

metrics are particularly sensitive to subtle changes in physiological regulation and 

have been associated with pathophysiological states such as sepsis, neurological 

instability, and poor autonomic tone [30, 81]. 

Lastly, Linear regression- and model-based methods were derived by fitting 

linear models and stochastic differential equation (SDE) approximations to segments 

of the vital sign data [66, 74]. Linear trend coefficients describe the direction and 

rate of physiological change over time, while Friedrich coefficients capture drift and 

diffusion characteristics under the assumption of nonlinear stochastic dynamics. 

These features allow for interpretable modeling of trends, such as progressive 

bradycardia or deteriorating oxygenation, which unfold over longer durations. 

Additionally, considering that vital sign data from patient monitors are recorded 

as integers, the index of qualitative variation (IQV) [85-91] was also applied to 

account for this characteristic. Vital sign data collected from patient monitors, 

including heart rate, respiratory rate, and peripheral oxygen saturation, are typically 

stored as discrete integer values due to limitations in hardware precision and the 

requirements of real-time clinical monitoring. Unlike continuous, high-resolution 
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waveforms such as ECG, these discretized signals offer limited granularity, which 

can obscure subtle physiological variations when analyzed using conventional 

statistical measures. To address this issue, the IQV was incorporated into the feature 

extraction process. IQV is particularly effective for analyzing non-continuous or 

discretized data, as it captures distributional variability that traditional metrics like 

mean and standard deviation may overlook, especially when the data have been 

rounded or encoded at low resolution. By applying IQV, the feature set gains 

additional representational depth, which can be especially beneficial in studies with 

small sample sizes or imbalanced class distributions. In such cases, reliance solely 

on standard numerical descriptors can compromise model performance, whereas the 

inclusion of qualitative variability measures offers a complementary approach to 

detecting clinically relevant patterns. 

We utilized several Python libraries, including NumPy [92], SciPy [93], tsfresh 

[74], statsmodels [94], and librosa [95], to implement the previously described 

feature extraction techniques. For algorithms not provided by these packages, we 

implemented the required methods. To optimize performance and mitigate the 

performance degradation resulting from Python’s iteration process, we compiled 

time-critical code sections with LLVM using Numba [96]. 

 

2.2.4. Continuous Vital Signs Feature Analysis and 

Selection 

We defined the analytical problem as a multivariate time series classification task to 

optimize the interpretation and utility of the analysis results. Based on this problem 

definition, we designed an effective methodological framework to conduct statistical 

analysis and hypothesis-driven feature evaluation aimed at identifying variables 

significantly associated with adverse clinical outcomes such as complications and 
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mortality. To achieve this, we utilized various domain-agnostic feature selection 

algorithms [74], which were combined or refined as necessary, to meet the aims of 

this study as schematically represented in Figure 2-1. 

 

Figure 2-1. Proposed feature analysis and selection method. 

Features derived from continuous vital signs present several distinct analytical 

challenges. Firstly, the large number of extracted features and their unclear 

physiological implications challenge traditional clinical expert-driven selection 

approaches. Secondly, this dataset inherently exhibits high dimensionality, where the 

number of features p frequently exceeds the available sample size n. Lastly, the 

dynamic growth trajectory of preterm infants leads to significant time-dependent 

variations in vital sign-based features.  

 Research in preterm infants, characterized by a large number of candidate 

predictors and risk factors relative to a small, highly heterogeneous patient 

population, shares methodological similarities with Genome-Wide Association 
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Studies (GWAS). In single nucleotide polymorphism (SNP) studies, bootstrapping 

and FDR control methods have been frequently used to identify robust risk factors 

and associations [97-99]. Therefore, this study proposed methods for efficiently 

controlling the FDR in large feature sets while enabling parallel computing and aims 

to implement these methods as a framework. 

This study implemented a multiple data-splitting FDR procedure, adapted from 

the method of Dai, et al. [41] for distributed computing. Dai, et al. originally 

proposed a data-splitting approach to FDR control, based on Least absolute 

shrinkage and selection operator (Lasso) and Ordinary Least Squares (OLS) 

regression, to overcome the limitations of conventional FDR methods. Their 

framework demonstrated high efficiency and strong performance in relevant feature 

selection within high-dimensional datasets.  

We adopted this FDR control framework for several reasons. Firstly, data 

splitting, which involves randomly partitioning a dataset for analysis, inherently 

facilitates distributed processing. Secondly, the applicability is straightforward, 

requiring only that the estimated coefficients be symmetric around zero, a condition 

easily met in our context.  

However, a notable drawback of the original study is its dependence on Lasso 

regression to derive coefficient values. As the feature dimension increased, the 

number of iterations required for convergence, and consequently the computational 

time, substantially escalates. Given the nature of convex optimization problems, 

Lasso-based feature selection methods are substantially limited in p>n scenarios 

[100]. Furthermore, the original Lasso implementation is restricted in the 

parallelization transformation because its convergence requires the outputs from 

prior iterations. Therefore, to retain the advantages of FDR control via data splitting 

while enabling effective parallel processing, we modified the original approach for 

application in this research. 

In this study, we formulated mirror statistics based on the equations [41, 101]. 
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Mirror statistics exhibit several key properties. First, relevant features, which those 

highly associated with response variables or events, yield larger positive mirror 

statistics. Second, irrelevant or null features tend to produce mirror statistics that are 

close to zero or symmetric around zero.  

These characteristics are achieved by merging the coefficients from two split 

estimators. This design offers a significant advantage. Even if a false positive 

association inadvertently arises from one estimator, the differing association from 

the other estimator helps ensure the merged result is symmetric around zero. This 

makes the mirror statistics more robust than those derived from a single estimator 

and facilitates straightforward application. We used the following equation to 

calculate mirror statistics 𝑀𝑗 in this study. 

𝑀𝑗 = 𝑠𝑖𝑔𝑛 (𝛽𝑗̂
(1)

𝛽𝑗̂
(2)

) 𝑓 (|𝛽𝑗̂
(1)

| |𝛽𝑗̂
(2)

|), 

where 𝛽𝑗̂
(1)

, 𝛽𝑗̂
(2)

 are the estimated coefficients for the features obtained from 

each data split, and merging function 𝑓(𝑢, 𝑣) = 𝑢𝑣. To compute the mirror statistics, 

we utilized estimators based on the Chi-Squared test, information gain[102], and the 

Kolmogorov-Smirnov(KS) test [103]. For the Chi-Squared test, numerical variables 

were binned into a 2×2 contingency table using the chi-merge method [104]. To 

estimate 𝛽̂(1), numerical variables were transformed into 2×2 contingency tables 

using the chi-merge method. The resulting Chi-Squared test p-values were then 

adjusted using the FDR-BY procedure and subsequently merged with the signs 

derived from OLS regression coefficients. This merging with the OLS-derived sign 

was performed to ensure the resulting statistics were symmetric around zero. 𝛽̂(2) 

was calculated based on information gain statistics and subsequently combined with 

results from the KS test to achieve symmetry around zero. In Dai, et al. [41] study, 

the function 𝑓(𝑢, 𝑣) = 𝑢 + 𝑣 was chosen as the optimal transformation to ensure 
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the sampling distribution of the mirror statistics 𝑀𝑗 maintained symmetry around 

zero and simultaneously achieved maximal statistical power. However, in the context 

of this study, where the Chi-Squared test is adopted and a 2×2 contingency table 

arrangement results in Chi-Squared statistics equivalent to squared Z-test statistics, 

we opted for 𝑓(𝑢, 𝑣) = 𝑢𝑣 to fulfill the crucial symmetry assumption for the mirror 

statistics. The cutoff methodology in this study follows that of the data-driven cutoff  

approach proposed by Dai, et al. [41]. The data-driven cutoff 𝜏𝑞 as followed. 

𝜏𝑞 = min {𝑡 > 0:
#{𝑗: 𝑀𝑗 < −𝑡}

#{𝑗: 𝑀𝑗 > 𝑡}⋁1
≤ 𝑞}, 

where 𝑞 ∈ (0,1) is the target FDR control level, and 𝑀𝑗 is the mirror statistics of 

the jth feature. 

Feature selection for each subsample in this research was subsequently 

conducted by implementing Algorithm 1. 
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Algorithm 1. Feature Selection via false discovery rate control with multiple 

data split replications 

Input: 𝒟 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  : original dataset 

m: number of data split replications 

𝑞: FDR control level 

Output: Selected relevant feature set 𝑆̂ 

 

1. Initialize 𝑆 ← ∅ 

for 𝑖 = 1 𝑡𝑜 𝑚 do 

2. Split the data into two groups 𝐷(1), 𝐷(2). 

3. Estimate the coefficient 𝛽̂(1) from Chi-squared statistics (chi-merge) 

with OLS using 𝐷(1). 

4. Estimate the coefficient 𝛽̂(2) from information gain and Kolmogorov-

Smirnov test using 𝐷(2). 

5. Calculate the mirror statistics 𝑀𝑗 = 𝑠𝑖𝑔𝑛 (𝛽𝑗̂
(1)

𝛽𝑗̂
(2)

) 𝑓 (|𝛽𝑗̂
(1)

| |𝛽𝑗̂
(2)

|). 

6. Calculate the cutoff value 𝜏𝑞 =  min {𝑡 > 0:
#{𝑗:𝑀𝑗<−𝑡}

#{𝑗:𝑀𝐽>𝑡}⋁1
≤ 𝑞}. 

7. Select the features 𝑆(𝑖) ← {𝑗: 𝑀𝑗 > 𝜏𝑞} where 𝜏𝑞 is the cutoff for FDR 

level q. 
8. Append 𝑆(𝑖) to 𝑆. 

 

for 𝑗 ∈ {1, 2, … , 𝑝} do 

9. Estimate the associated inclusion rate 𝐼𝑗̂ =
1

𝑚
∑

𝕀(𝑗∈𝑆(𝑘))

|𝑆(𝑘)|⋁1
𝑚
𝑘=1 . 

10. find the largest ℓ ∈ {1,2, … , 𝑝} that satisfies 𝐼1̂ + 𝐼2̂ + ⋯ + 𝐼ℓ̂ ≤ 𝑞. 
11. select the features 𝑆̂ = {𝑗: 𝐼𝑗̂ > 𝐼ℓ̂}.  

 

Consequently, proposed methods were specifically designed to address two 

methodological considerations. The first consideration is the crucial issue of FDR 

control within a high-dimensional feature space. The second involves strategically 

mitigating the confounding effects of immaturity and ongoing growth in preterm 

infants. As mentioned in Chapter 1, preterm infants showed substantial inter-

individual variability in clinical severity directly result from their developmental 

immaturity. As these infants mature, they progressively acquire the essential 

physiological functions required for extrauterine survival. These developmental 

changes lead to considerable fluctuations in vital signs. A critical challenge arises 

because major clinical events, routinely investigated in NICU research, often 
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manifest at disparate maturational stages, thereby necessitating robust analytical 

strategies to account for these developmental discrepancies. Fundamentally, this 

work endeavors to minimize avoidable biases induced from observational studies, 

including immortal time bias, depletion of susceptible bias, confounding, and the 

false discovery problem [105]. 

To mitigate the effects of immaturity observed in our observational study, this 

research employed an emulation of a matched case-control design. This approach 

aligns with a growing trend in recent clinical research and guidelines, where the 

emulation of a target trial is increasingly applied to address the inherent limitations 

of conventional observational studies [106]. Applying this target trial emulation not 

only mitigates avoidable biases inherent in observational studies but also offers the 

significant advantage of reducing ethical concerns and potential harm to patients 

[105-107]. Therefore, leveraging these advantages, this study implemented an 

emulation of a matched case-control study through bootstrapping, based on the 

method outlined below. This approach was specifically motivated by research 

focused on emulating patient target trials [108]. The emulation of a matched case-

control design was implemented as a procedure that aggregates feature selections 

performed within subsamples, following Algorithm 1 as previously described. We 

denoted the dataset as 𝒟 = {(𝑥𝑖, 𝑦𝑖 , 𝑑𝑖)}𝑖=1
𝑁 , where 𝑥𝑖 ∈ ℝ𝑝 is the continuous vital 

signs feature vector, 𝑦𝑖  is the response variables, and 𝑑𝑖  is the demographics 

information of preterm infants 𝑖.  
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Algorithm 2. Feature selection and aggregation via emulations 

Input: 𝒟 = {(𝑥𝑖 , 𝑦𝑖 , 𝑑𝑖)}𝑖=1
𝑁  : original dataset 

m: number of resamples 

𝑐 ∈ [0,1]: inclusion rate cut-off threshold 

ℐ : function for inclusion criteria 

ℱ(∙): the proposed feature selection methods (Algorithm 1.) 

Output: Selected relevant feature set 𝑆̂ 

 

1. Initialize 𝑆 ← ∅ 

for 𝑖 = 1 𝑡𝑜 𝑚 do 

2.  Generate a subsample  𝐷(𝑖) of size 𝑁 from 𝒟, 
   restricted to sample satisfying ℐ(𝑑𝑖) = 𝑇𝑟𝑢𝑒, with replacement. 

3.  Let 𝑋(𝑖) ∈ ℝ𝑛𝑖×𝑝, 𝑌 ∈ ℝ𝑛𝑖 

  denote the feature and response vector corresponding to 𝐷(𝑖). 

4. Apply the feature selection methods, 𝑆(𝑖) ←  ℱ(𝑋(𝑖), 𝑌(𝑖)). 

5. Append 𝑆(𝑖) to 𝑆. 

 

for 𝑗 ∈ {1, 2, … , 𝑝} do 

6. Estimate the associated inclusion rate 𝐼𝑗̂ =
1

𝑚
∑

𝕀(𝑗∈𝑆̂(𝑘))

|𝑠̂(𝑘)|⋁1
𝑚
𝑘=1 . 

7. find the largest ℓ ∈ {1,2, … , 𝑝} that satisfies 𝐼1̂ + 𝐼2̂ + ⋯ + 𝐼ℓ̂ ≤ 𝑐. 
8. select the features 𝑆̂ = {𝑗: 𝐼𝑗̂ > 𝐼ℓ̂}.  

 

Finally, to enable the application of the aforementioned feature selection 

methods and the bootstrap-based subsample feature selection and aggregation 

procedure to parallel computing, we configured the system as follows (Algorithm 3). 

Our proposed algorithm enhances efficiency by not copying and transferring the 

entire dataset. Instead, it provides only the keys 𝒯  required to access the data, 

enabling efficient task set partitioning and registration to individual server job pools. 

Additionally, this design inherently simplifies partition configuration, as each unit 

task of 𝒯 solely requires ensuring result collection at its terminal point. Although 

Algorithm 3 defines K in terms of server units, it offers the flexibility to partition K 

based on alternative criteria as necessitated by varying contexts. Beyond this, the 

system can be structured to support dynamic resource allocation and processing by 

integrating load balancing capabilities. 
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Algorithm 3. Parallelized replication for feature selection in high-

dimensional data  

Input: 𝒟 =  {𝐷(𝑖)}
𝑖=1

𝑚
  : subsampled datasets 

𝐷(𝑖) = {(𝑥𝑗
(𝑖)

, 𝑦𝑗
(𝑖)

)}
𝑗=1

𝑛𝑖
: the ith subsample dataset 

m: number of resamples 

p: number of features 

𝐾: number of servers 

ℱ(∙): the proposed feature selection methods (Algorithm 1.) 

 

Output: Selected relevant feature set 𝑆̂ 

 

Part I: Construct job list 

1. Construct task set of all Mp jobs: 

𝒯 = {(𝑖, 𝑗)|𝑖 ∈ 1,2, … , 𝑚; 𝑗 ∈ 1,2, … , 𝑝} 

2. Flatten the task set, and divide into K disjoint parts: 

𝒯 ′ = ⋃ 𝒯(𝑘)𝐾
𝑘=1 , where 𝒯(𝑘) = {(𝑖, 𝑗) ∈ 𝒯|𝑓𝑙𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 ∈ [

𝑘𝑀𝑝

𝐾
+ 1,

(𝑘+1)𝑀𝑝

𝐾
]} 

 

Part II: Distribute to servers 

3. Send each task set 𝒯(𝑘) to kth server. 

 

Part III: Local computation 

4. On the kth server, compute feature selection methods 

𝑆𝑖,𝑗 = ℱ(𝑥𝑗
(𝑖)

, 𝑦𝑗
(𝑖)

), where (𝑖, 𝑗) ∈ 𝒯(𝑘) 

 

Part IV: Aggregation 

5. Gather all computed selected feature sets from servers, reconstruct matrix: 

𝑆 = [𝑆𝑖,𝑗] ∈ ℝ𝑚×𝑝  

for 𝑗 ∈ {1, 2, … , 𝑝} do 

6. Estimate the associated inclusion rate 𝐼𝑗̂ =
1

𝑚
∑

𝕀(𝑗∈𝑆̂(𝑘))

|𝑠̂(𝑘)|⋁1
𝑚
𝑘=1 . 

7. find the largest ℓ ∈ {1,2, … , 𝑝} that satisfies 𝐼1̂ + 𝐼2̂ + ⋯ + 𝐼ℓ̂ ≤ 𝑐. 
8. select the features 𝑆̂ = {𝑗: 𝐼𝑗̂ > 𝐼ℓ̂}.  

 

 

2.2.5. Data Analysis Framework Implementation 

In the implementation phase, we evaluated the scalability and parallel processing 

capabilities of these computationally demanding methods, as detailed previously. 

Therefore, this study proposed and implemented the scalable continuous vital sign 

analysis process, assuming the infrastructure outlined in the scenario is already in 
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place (Figure 2-2). 

 

 

Figure 2-2. Proposed continuous vital signs analysis process. 

We considered the following design requirement. First, the framework has to 

simultaneously process large volumes of continuous vital sign data. Unlike EMR 

data, which are typically recorded selectively based on clinical judgment or 

intervention, continuous vital sign data are collected automatically and non-

selectively through patient monitors in real time, without being influenced by 

clinician intent. This objective and uninterrupted acquisition results in datasets that 

are substantially larger relative to the sampling rate, often requiring computational 

strategies designed for large-scale time-series data. To address the resulting 

analytical demands, the MapReduce computing model (Figure 2-3) was applied 

within the proposed framework to effectively handle the volume and structure of the 

data [109, 110]. 
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Figure 2-3. MapReduce model [109]. 

While a MapReduce model is not optimized for real-time analysis or typical 

healthcare IT environments, we adopted it for this study due to several key 

advantages. First, it offers an intuitive and immediately applicable framework for 

scalable continuous vital sign analysis. Second, the MapReduce paradigm is a proven 

system for big data analysis, validated across numerous fields. Finally, its inherent 

Split-Apply-Combine strategy facilitates the extensibility of bootstrapping methods, 

which was crucial for this study [111]. By directly implementing this existing 

distributed computing paradigm, we aimed to demonstrate the compatibility of our 

proposed continuous vital sign feature extraction and analysis methods with modern 

distributed computing architectures.  

To assess the compatibility of our proposed methods with the fundamental 

MapReduce paradigm, this study utilized CouchDB [112]. CouchDB is a document-

based NoSQL database specifically designed with the MapReduce computing model 

as a core architectural principle. 

Most NoSQL databases such as MongoDB, Aerospike, DynamoDB, Azure 

Cosmos DB, Apache Ignite, and Cassandra, which often rely on separate aggregation 

functions or in-memory approaches for rapid response, leading to performance 
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variations based on optimization and server computational resources [113-120]. In 

contrast, CouchDB's document store architecture provides a stable and predictable 

environment. This made it particularly suitable for evaluating the minimum 

performance baseline of the methodologies we proposed. 

Furthermore, CouchDB aligns well with the practical needs of a typical clinical 

institution. It facilitates incremental server expansion and contraction, which is 

crucial for adapting to fluctuating demands. More importantly, for use in a clinical 

setting, it offers high fault tolerance and availability, making it an ideal choice for 

developing a robust database for this study. 

In MapReduce model, implemented through CouchDB's view system, we 

defined the three distinct views to process the input data and generate defined 

document outputs. These views—an event view, a feature view, and a demographics 

view—were designed to efficiently extract features from original vital signs, define 

clinical events, and generate random subsamples (Figure 2-4).  

 

Figure 2-4. Map-reduce workflow for subsampling and feature extraction. 

The Event view was specifically configured to capture the event timelines of 

the preterm infants under investigation. Within its Map function, patient identifier, 
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event name, and event time were defined as the group key. This view processed 

emitted data as individual documents and did not implemented any reduce operations.  

This design choice was made because, during the emulation of the analysis 

enrollment process, only the event and demographic information for the study cohort 

is required. Should additional document-specific details be necessary, it is more 

efficient to query these documents subsequent to the enrollment phase; thus, a 

Reduce function was not applied within this view. 

The Demographics view was designed to capture the demographic information 

of the preterm infants. In its Map function, patient identifier and key demographic 

variables, such as gestational age and birth weight, were configured as the group key. 

This view, similar to the Event view, did not define any Reduce function. This design 

choice was based on the efficiency gained by performing initial patient screening at 

the enrollment stage, with more detailed document queries executed as needed post-

enrollment. 

The Feature view processed original continuous vital sign time series data. Its 

Map function rounded measurement timestamps to the nearest hour, defining the 

patient identifier, specific vital sign, and rounded measurement time as the key. This 

data then passed through a Reduce function, generating the diverse domain-specific 

features discussed in the preceding section. While CouchDB's views typically use 

JavaScript Map-Reduce, we implemented distributed processing by loading these 

operations to a separately configured Docker-based Python query server container. 

This design was specifically chosen to enhance processing speed and improve the 

extensibility of feature calculation functions. 

The implementation of the case-control study emulation and the feature 

selection methods followed the workflow depicted in Figure 2-5. 
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Figure 2-5. Integrated workflow for emulating Case-Control studies and 

feature selection. 

The feature selection workflow, implemented in this study, comprises four 

distinct steps based on Algorithm 3, as introduced in the preceding steps. 

Step 1: This initial step involves extracting patient identifiers that satisfy the 

predefined inclusion criteria for the infants under investigation. Specifically, patient 

identifiers for both the event and control groups are first retrieved from the Event 

view. Subsequently, corresponding demographic entries and patient identifiers 

matching these inclusion criteria are extracted from the Demographics view for 

verification. 

Step 2: This step performs the actual bootstrapped emulation of a case-control 

study. Patient identifiers are randomly selected based on numbers generated by a 

random generator to form subsamples. From these subsamples, feature sets for 

analysis are extracted using patient identifiers, event time, and vital signs as keys. 

Step 3: In this step, relevant features are selected utilizing the methods and 

procedures implemented in Algorithm 1 of this study. 

Step 4: The final step involves re-selecting relevant features from each 

subsample based on their inclusion rate, as detailed in Algorithm 2 and 3, to yield 

the set of relevant features. 

This implementation, structured as described, offers significant parallel 
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processing capabilities. With the exception of Step 4 (the aggregation phase), all 

tasks were designed as independently computable units. This flattened task set 

allows for several levels of parallelization: local parallel processing of feature 

estimation within individual subsample nodes, across different features, or even full 

parallel processing of feature estimators based on subsample index. 

Consequently, if additional computational nodes or parallel processing 

resources are available, the system can flexibly handle multiple subsamples and their 

corresponding feature coefficient estimations in a distributed manner prior to the 

aggregation step. 

A key consideration for the overall completion of this algorithm is that its 

subsampling procedures cannot terminate until the full computation of all feature 

estimators (Steps 2–3) has been performed for relevant feature selection. This 

scheduling consideration is a common and critical factor not only for this framework 

but also for many parallel computing tasks. Fortunately, various methodologies and 

solutions have been proposed to mitigate and resolve such issues, and these can be 

similarly applied to the proposed framework in this study. 

 

2.2.6. Validation Strategies 

To validate the hypotheses underlying the methodologies and the implemented 

framework proposed in this study, we first generated a synthetic dataset and 

conducted a simulation study. The primary objective of this simulation study was to 

determine whether our parallel approaches effectively reduce the computational 

burden, particularly computation time, compared to conventional methods. 

Concurrently, we aimed to verify the robustness of our methods when confronted 

with features of unknown distributions. We also evaluated to characterize and 

validate the performance of the proposed methods by evaluating the FDR and feature 
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selection sensitivity for relevant features, considering varying levels of signal power, 

sample sizes, and ratios of null (irrelevant) features. 

Furthermore, we focused on validating the proposed methods using real-

world data pertinent to key NICU research topics. Simultaneously, this study 

validated the proposed methods by identifying clinically significant variables and 

evaluating their capacity to substantially enhance predictive model performance. Our 

initial objective was to explore the generalizability and robust performance of our 

predictive models. This included evaluating their ability to identify clinically critical 

event predictors and also assessing the performance of the predictive models within 

an external validation cohort. We also validated whether the identified features were 

consistent with or distinct from previously established characteristics, thereby 

evaluating our feature selection aligned with intended clinical interpretations. This 

allowed us to determine the features were selected as intended. Then, we compared 

the performance of an existing extubation readiness prediction model, which relied 

on descriptive statistics. This was contrasted with a model incorporating features 

extracted using our proposed continuous vital sign analysis methodology. This 

comparison assessed whether our approach yielded superior performance compared 

to existing descriptive statistics. Lastly, to determine if our methodology could 

identify previously unrecognized physiological predictors or risk factors, we 

extracted vital sign risk factor identification markers for IVH using the proposed 

framework. 

 

2.3. Results 

 

2.3.1. Evaluation of Parallel Procedure in Execution Time 

We evaluated the computational benefits of the proposed parallel procedure. We 
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conducted simulation study to compare the execution time of our parallel approach 

against a traditional sequential procedure across a range of data complexities, from 

low-dimensional to high-dimensional datasets. We combined sample sizes n of 64, 

256, 512, and 2048 with feature dimensions p of 10, 100, 1,000, and 10,000. 

For the experimental setup, a single Kubernetes [121] cluster, configured with 

Kind [122], was deployed on the single server. This cluster consisted of three nodes, 

each allocated 8 cores for this analysis. Mean and standard deviation (SD) of 

execution times were calculated from 200 repetitions. The execution time results are 

presented in Figure 2-7, Figure 2-8. 

For the feature dimension of p=10, the sequential procedure demonstrated a 

marginally faster mean (SD) execution time of 0.376 (0.122) seconds compared with 

the parallel procedure's 0.583 (0.139) seconds. However, the computational 

advantages of the parallel approach became apparent as the number of features 

increased. At p=100, the parallel procedure completed in 1.232 (0.367) seconds, 

which was significantly faster than the sequential procedure execution time 2.481 

(0.569) seconds. This performance divergence was increasingly pronounced with 

higher feature dimensions. For p=1,000, the parallel procedure completed in 2.574 

(0.507) seconds, whereas the sequential procedure required 22.016 (4.225) seconds. 

At p=10,000, the parallel procedure demonstrated significantly faster execution at 

15.060 (2.293) seconds, compared to 221.830 (59.631) seconds for the sequential 

procedure. 
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Figure 2-6. Comparison of execution times for parallel and sequential 

procedures across varying feature dimensions. 

 

 

Figure 2-7. Execution time by sample size and the number of features: (A) 

parallel procedure, (B) sequential procedure 
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Figure 2-8. Execution time by sample size and the number of features in 

parallel procedure. 

2.3.2. Evaluation of FDR and Sensitivity for relevant 

features 

To evaluate the performance of our proposed feature selection methodologies, we 

conducted a simulation study based on the regression problem formula from  

Frieman’s [123] study, as followed: 

𝑓(𝑋) = 10 𝑠𝑖𝑛(𝜋𝑥1𝑥2 ) + 20 (𝑥3 −
1

2
)

2
+ 10𝑥4 + 5𝑥5 + 𝜖. 

 This formula allowed us to assess the sensitivity to relevant features and the 

FDR. For this analysis, we set the sample size at 256 and fixed the number of true 

relevant features at 5 and null features at 10,000. We then varied the case ratio at 0.1, 

0.25, and 0.5 for different simulation runs. These ratios were selected to reflect 

typical case-control patient ratio and feature dimensions commonly observed in 

NICU research.  

The results of the simulation runs are presented in Figure 2-9 and Figure 2-10. 

Our proposed methodologies consistently demonstrated high sensitivity, even at low 
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event rates. Notably, while traditional logistic regression-based feature selection 

yielded a comparable FDR to our methods, it was unable to identify relevant features. 

Conversely, the feature selection based on KS test and Chi-Squared test showed high 

sensitivity at the event ratio of 0.1, but their FDR approached 1.0. This result 

indicates a substantial number of null features were incorrectly identified as false 

positives. 
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Figure 2-9. Sensitivity results from the simulation study. 

 

Figure 2-10. False discovery rate results from the simulation study. 

Therefore, our methodologies exhibited stable feature selection performance 

even with a low case ratio. These findings suggest that a reasonable level of 

sensitivity could be maintained using our partitioning and subsequent aggregation 

methods. 

※ This chapter will be submitted to a peer-reviewed journal for publication.  
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Chapter 3. Development and Validation 

of a Predictive Model for Clinical 

Critical Events in Preterm Infants 

Admitted to the NICU 
 

 

3.1. Introduction 

 

In this chapter, we utilized the frameworks presented in preceding chapters to 

identify predictors for the early detection of major complications, LONS and 

mortality, in NICU preterm infants. Furthermore, we validated the identified 

predictors in an external dataset to demonstrate the hypothesis that our proposed 

frameworks enable the selection of robust relevant features. 

In addition, we developed and validated a predictive model to evaluate whether 

the features identified using the methodologies proposed in the previous chapter 

contain sufficient information for forecasting clinical events in preterm infants 

admitted to the NICU. Furthermore, we assessed the applicability of these features 

in practical predictive modeling to determine their effectiveness in supporting early 

risk detection and clinical decision-making. 

 

 

3.2. Methods 

 

3.2.1. Study Design 

This study was approved by the Institutional Review Board of Seoul National 

University Bundang Hospital (IRB No. B-1806-472-106). In this retrospective study, 
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we used continuous vital sign data recorded from bedside patient monitors in the 

NICU, as well as demographic information extracted from EMRs. The study 

population included inborn infants admitted to the NICU at Seoul National 

University Bundang Hospital (SNUBH) between March 2018 and December 2022, 

and neonates admitted to the NICU at the University of Virginia (UVA) hospital 

between January 2009 and December 2019 [35]. To develop a mortality prediction 

model for low-birth-weight preterm infants, only those for whom continuous 

monitoring data were available were included in the analysis. Furthermore, to reduce 

methodological differences from previous studies, the analysis was restricted to 

infants for whom heart rate and oxygen saturation data were available, consistent 

with the variables used in prior work [35]. 

We included preterm infants with GA<32 weeks or birth weight<1,500 grams 

for this study. Infants were excluded if GA or birth weight data were missing, or if 

heart rate or oxygen saturation measurements were not available for a minimum of 

24 hours. 

 

3.2.2. Data sources 

Demographic and clinical data for infants in the NICU at SNUBH were obtained 

from the hospital’s EMR system. Continuous vital sign data were collected using 

Philips patient monitors. The heart rate data used in this study was obtained from 

two separate sources, with ECG-derived heart rate and pulse rate measured through 

pulse oximeter both included in the analysis. Oxygen saturation was measured using 

pulse oximeter, and respiratory rate was measured through chest impedance 

monitoring. Blood pressure measurement data consisted of both invasive and non-

invasive methods. ECG-derived heart rate, pulse, oxygen saturation, respiratory rate, 

and invasive blood pressure were stored at 30-second intervals, whereas non-
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invasive blood pressure was typically recorded at 30-minute intervals. 

In the NICU at the UVA Hospital, ECG-derived heart rate measured by the 

BedMaster Ex bedside monitoring system was sampled and stored at 0.5 Hz. 

Similarly, oxygen saturation data measured by the Masimo SET pulse oximetry 

device were also sampled at 0.5 Hz and used in the analysis [35]. 

 

3.2.3. Eligibility criteria and outcome 

In this study, the primary outcome was all-cause mortality occurring after the first 

24 hours of life. The index time was defined as the designated clinical assessment 

point. Infants who died during NICU admission were classified into the expired 

group, with the index time set between 24 and 48 hours prior to death. Infants 

meeting inclusion criteria who survived to discharge were assigned to the survival 

group, with their respective index times categorized accordingly. For the 

identification of predictors and subsequent model development, the prediction 

execution time was defined as the point at which the predictive model was applied. 

In cases of sepsis, the index time was established as the earliest date between the 

blood collection time for a positive blood culture and the initiation of antibiotic 

therapy within five days of that collection. For these sepsis predictions, the positive 

class encompassed data from 24 to 48 hours preceding this index time. For all-cause 

mortality, the index time corresponded to the time of death, with the positive class 

being defined by data from 24 to 48 hours prior to this established index time.  

 

3.2.4. Predictors 

Features for the all-cause mortality predictive model were extracted using the 

framework previously proposed. We utilized continuous vital signs, specifically 

heart rate (derived from ECG and pulse oximeter), invasive or non-invasive blood 
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pressure, and respiratory rate, as inputs for the predictive model. To assess both 

short-term and long-term effects, data were analyzed across various window sizes: 

1, 2, 3, 6, 12, and 24 hours. For feature extraction, continuous vital signs features 

were generated using all possible combinations of measured vital signs, the various 

domain-specific feature calculation methods described in Chapter 2, and defined 

observation window sizes (1, 2, 3, 6, 12, 24 hours). This means that each unique vital 

sign-feature calculation method pair was applied across every specified observation 

window size. 

 

3.2.5. Statistical Analysis 

Descriptive statistics were employed to summarize baseline characteristics. 

Normality of continuous data distributions was evaluated using the Kolmogorov–

Smirnov test. Variables with normal distribution are presented as means with 

standard deviations (SD) and compared using two-sided Student’s t tests. For 

variables not conforming to a normal distribution, medians with interquartile ranges 

(IQR) were reported and comparisons conducted using the Mann–Whitney U test. 

Categorical variables were analyzed using the Chi-Squared test or Fisher’s exact test, 

as appropriate. Variables with more than 50% missing observations were excluded 

from further analysis. All statistical tests were two-sided, and a p-value of less than 

0.05 was considered statistically significant. 

 

3.2.6. Predictive Model Development and Evaluation 

We utilized the PyCaret package [124] for the training, optimization, and validation 

of our predictive models. The models in this study included logistic regression, 

decision tree classifier, random forest [125], multilayer perceptron (MLP), gradient 

boosting machine [126], AdaBoost [127], Naïve Bayesian, and Ridge classifier. 
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Hyperparameter tuning and scaler fitting were performed on the development cohort, 

with stratified 5-fold cross-validation applied for hyperparameter tuning within this 

cohort. To assess model robustness, the trained models were evaluated on 

independent internal and external validation cohorts without further calibration. 

Model performance was compared using accuracy, area under the receiver operating 

characteristics curve (AUROC), average precision (AP), recall, precision, and F1 

score. 

 

 

3.3. Results 

 

3.3.1. Study Population 

From 436 infants admitted to the SNUBH NICU between March 2018 and December 

2022, preterm infants born from March 2018 to June 2021 were allocated to the 

development cohort, while those born from July 2021 to November 2022 constituted 

the internal validation cohort. (Figure 3-1 A). For external validation, 1,689 infants 

met the inclusion criteria were identified from a cohort of 6,837 infants admitted to 

the UVA NICU between January 2009 and December 2019 (Figure 3-1B). 
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Figure 3-1. Development and internal and external validation cohort to 

develop and evaluate all-cause predictive models. (A) Development cohort and 

internal validation cohort. (B) External validation cohort. 

Table 3-1 shows the demographic and clinical characteristics of the three study 

cohorts. The development cohort included 297 patients, of whom 276 survived and 

21 died during the admission. Comparing the expired and surviving preterm infants, 

the expired group demonstrated significantly lower mean GA (25.4 [2.3] weeks) and 

birth weight (688.7 [273.1] g) compared to the survival group (31.2 [1.9] weeks and 

1431.1 [341.5] g, respectively). 

The internal validation cohort showed similar demographic trends to the 

development cohort. Of these 139 preterm infants, only 6 preterm infants expired 

during the admission. Consistent with findings from the development cohort, the 

expired group in the internal validation cohort exhibited significantly lower GA (24.3 

[0.5] weeks) and birth weight (618.3 [149.6] g) compared to the survival group (GA, 

30.9 [2.1] weeks; birth weight, 24.3 [0.5] g). The external validation cohort included 

1,563 preterm infants, with 113 infants in the expired group, showing demographic 

trends similar to the SNUBH preterm infants. In the external validation cohort, the 

expired group exhibited significantly lower mean [SD] GA (27.1 [3.5] weeks) and 

birth weight (954.4 [441.2] g) compared to the survival group. Notably, comparing 
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the expired preterm infants from the UVA with those from SNUBH, the UVA group 

had slightly higher birth weight and GA. 
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Table 3-1. Baseline characteristics. 

 Development Cohort 

Characteristics All Survival Group Expired Group p-value  

Number of infants 297 276 21  

Gestational Age, mean (SD) 30.8 (2.5) 31.2 (1.9) 25.4 (2.3) <0.001 

Birth weight, mean (SD), g 1378.6 (387.0) 1431.1 (341.5) 688.7 (273.1) <0.001 

Gender, n (%)     

Female 141 (47.5) 130 (47.1) 11 (52.4) 0.810 

Male 156 (52.5) 146 (52.9) 10 (47.6)  

APGAR 1 min, mean (SD) 5.7 (1.8) 5.7 (1.7) 3.0 (1.5) 0.007 

APGAR 5 min, mean (SD) 7.9 (1.3) 7.9 (1.2) 6.2 (1.5) 0.032 

APGAR 10 min, mean (SD) 7.7 (0.9) 7.9 (0.7) 6.0 (0.1) 0.036 

 Internal Validation Cohort 

Characteristics All Survival Group Expired Group p-value  

Number of infants 139 133 6  

Gestational Age, mean (SD) 30.6 (2.5) 30.9 (2.1) 24.3 (0.5) <0.001 

Birth weight, mean (SD), g 1339.4 (429.8) 1372.0 (409.3) 618.3 (149.6) <0.001 

Gender, n (%)     

Female 68 (48.9) 66 (49.6) 2 (33.3) 0.681 

Male 71 (51.1) 67 (50.4) 4 (66.7)  

APGAR 1 min, mean (SD) 5.2 (1.8) 5.2 (1.8) 3.0 (1.7) 0.152 

APGAR 5 min, mean (SD) 7.6 (1.4) 7.7 (1.3) 4.3 (2.9) 0.177 

APGAR 10 min, mean (SD) 6.4 (2.4) 7.0 (1.4) 5.3 (3.8) 0.530 

 External Validation Cohort 

Characteristics All Survival Group Expired Group p-value  

Number of infants 1689 1570 119  

Gestational Age, mean (SD) 29.1 (3.1) 29.2 (3.0) 27.1 (3.5) <0.001 

Birth weight, mean (SD), g 1259.3 (472.1) 1282.3 (466.5) 954.4 (441.2) <0.001 

Gender, n (%)     

Female 789 (46.7) 741 (47.2) 48 (40.3) 0.177 

Male 900 (53.3) 829 (52.8) 71 (59.7)  

APGAR 1 min, mean (SD) 5.2 (2.6) 5.4 (2.6) 3.2 (2.3) <0.001 

APGAR 5 min, mean (SD) 6.9 (2.0) 7.1 (1.9) 5.3 (2.4) <0.001 

APGAR 10 min, mean (SD) 6.7 (1.8) 6.8 (1.7) 5.7 (2.0) <0.001 

  

 

3.3.2. Identified Features of Clinical Critical Events 

The primary features selected using the proposed framework are detailed in Table 

3-2. For heart rate, sample entropy, multiscale sample entropy, permutation entropy, 

approximate entropy, and absolute sum of change were identified as important 

features from both ECG and pulse oximeter data. Notably, the expired group 

consistently exhibited significantly lower mean [SD] values across several entropy 

measures: approximate entropy (1.112 [0.118] vs. 1.469 [0.139]) and multiscale 

sample entropy (0.663 [0.355] vs. 1.176 [0.315]). In addition to information-
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theoretic methods, decorrelation time selected as a key feature derived from heart 

rate. Contrary to the entropy-based features, the expired group demonstrated a 

significantly higher mean [SD] decorrelation time (21.561 [6.236]) compared to the 

survival group (14.281 [4.440]). This similar tendency was observed in heart rate 

measured from pulse oximeter. For blood pressure, in contrast to high-frequency 

vital signs, mid-range, median, and mode were identified as primary indicators, with 

the expired group consistently exhibiting lower values than the survival group for 

these features. 

 

Table 3-2. Selected features for all-cause mortality from the development 

cohort. 

Features Survival Expired  p-value 

HR, absolute sum of changes; 24h 8071 (2787.638) 4161.564 (3436.378) <0.001 

HR, approximate entropy (m=2, r=0.1), 24h 1.469 (0.139) 1.112 (0.118) <0.001 

HR, approximate entropy (m=2, r=0.9), 6h 0.282 (0.094) 0.158 (0.118) <0.001 

HR, decorrelation time, 24h  14.281 (4.440) 21.561 (6.236) <0.001 

HR, multiscale sample entropy (m=2), 24h 1.176 (0.315) 0.663 (0.355) <0.001 

NBP-D, mid-range, 12h 40.280 (6.922) 31.022 (7.671) <0.001 

NBP-D, mode, 24h 38.008 (6.718) 26.116 (7.751) <0.001 

NBP-S, median, 24h 64.954 (6.426) 50.938 (10.077) <0.001 

NBP-S, mode, 6h 60.298 (8.013) 50.325 (14.511) 0.014 

Pulse, approximate entropy (m=2, r=0.3), 3h 0.884 (0.194) 0.522 (0.366) <0.001 

Pulse, approximate entropy (m=2, r=0.9),12h 0.265 (0.079) 0.134 (0.103) <0.001 

Pulse, permutation entropy (d=3, tau=1), 12h 1.722 (0.034) 1.541 (0.163) <0.001 

Pulse, sample entropy, 12h 1.060 (0.267) 0.536 (0.345) <0.001 

Abbreviations: HR, heart rate measured from an electrocardiogram; NBP-D, non-invasive diastolic blood pressure; NBP-S non-invasive systolic blood pressure; Pulse, heart rate measured 

from a pulse oximeter. 

 

To assess whether the proposed framework selects a consistent feature set 

during the external validation, we performed the same feature extraction and 

selection procedure (Table 3-3). The external validation cohort, being larger and 

containing more data than the SNUBH development cohort, resulted in a greater 

number of selected features. Consistent with the development cohort, entropy-based 

features were predominantly extracted from heart rate measurements. Similarly, both 

entropy and decorrelation time features from SpO2 were selected, consistent with 
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findings for sepsis. However, features derived from non-invasive blood pressure, 

which had a much wider measurement interval, were not identified as key mortality-

associated features in the external validation cohort, unlike in the development 

cohort. 

 

Table 3-3. Selected features for all-cause mortality from the external 

validation cohort. 

Features Survival Expired  p-value 

HR, approximate entropy (m=2, r=0.9), 3h 0.445 (0.147) 0.230 (0.176) <0.001 

HR, decorrelation time, 6h 11.571 (4.927) 18.876 (5.968) <0.001 

HR, mutiscale sample entropy (m=2), 2h 1.597 (0.454) 0.832 (0.654) <0.001 

HR, permutation entropy (d=6, tau=1), 24h  6.113 (0.245) 5.527 (0.694) <0.001 

Pulse, approximate entropy (m=2, r=0.3), 2h 0.932 (0.160) 0.632 (0.263) <0.001 

Pulse, approximate entropy (m=2, r=0.1), 24h 1.548 (0.210) 1.187 (0346) <0.001 

Pulse, approximate entropy (m=2, r=0.9), 1h 0.498 (0.145) 0.291 (0.206) <0.001 

Pulse, approximate entropy (m=2, r=0.9), 12h 0.419 (0.115) 0.228 (0.144) <0.001 

Pulse, multiscale sample entropy (m=2), 24h 1.387 (0.306) 0.816 (0.446) <0.001 

Pulse, permutation entropy (d=7, tau=1), 6h 6.301 (0.370) 5.986 (0.501) <0.001 

Pulse, sample entropy, 12h 1.385 (0.364) 0.802 (0.586) <0.001 

SpO2, approximate entropy (m=2, r=0.5), 6h 0.667 (0.253) 0.370 (0.240) <0.001 

SpO2, approximate entropy (m=2, r=0.5), 12h 0.665 (0.238) 0.360 (0.223) <0.001 

SpO2, approximate entropy (m=2, r=0.7), 6h 0.474 (0.182) 0.281 (0.185) <0.001 

SpO2, approximate entropy (m=2, r=0.7), 12h 0.457 (0.185) 0.244 (0.149) <0.001 

SpO2, approximate entropy (m=2, r=0.7), 24h 0.440 (0.166) 0.242 (0.136) <0.001 

SpO2, decorrelation time, 24h 7.519 (6.099) 16.145 (8.420) <0.001 

SpO2, Fourier entropy (bins=5), 6h 0.419 (0.216) 0.274 (0.246) 0.001 

Abbreviations: HR, heart rate measured from an electrocardiogram; Pulse, heart rate measured from a pulse oximeter; SpO2, oxygen saturation. 

 

For LONS, features extracted from SpO2 were predominantly selected as key 

indicators (Table 3-4). Consistent with findings for all-cause mortality, the heart rate 

decorrelation time was significantly longer in the sepsis group (2.448 [1.995]) 

compared to the control group. Entropy-based features were identified exclusively 

from pulse oximetry device, showing lower entropy in the sepsis group relative to 

controls. 
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Table 3-4. Selected features for late onset sepsis from the development cohort. 

Features Control Sepsis p-value 

HR, decorrelation time; 1h 1.3557 (1.565) 2.448 (1.995) <0.001 

Pulse, approximate entropy (m=2, r=0.5), 6h 0.643 (0.189) 0.454 (0.213) <0.001 

Pulse, decorrelation time , 1h 4.731 (3.889) 8.300 (5.827) <0.001 

Pulse, sample entropy, 12h  1.091 (0.286) 0.850 (0.362) <0.001 

SpO2, autocorrelation (mean), 2h 0.052 (0.141) 0.131(0.160) 0.002 

SpO2, b-index, 12h 0.029 (0038) 0.057 (0.048) <0.001 

SpO2, binned entropy, 1h 0.947 (0.540) 1.340 (0.512) <0.001 

SpO2, decorrelation time, 2h 0.865 (0.753) 1.589 (0.767) <0.001 

SpO2, decorrelation time, 3h 0.859 (1.353) 2.218 (2.436) <0.001 

SpO2, decorrelation time, 6h 0.712 (0.618) 2.638 (3.407) <0.001 

SpO2, decorrelation time, 12h 3.082 (3.189) 7.394 (5.882) <0.001 

SpO2, Fourier entropy (bins=100), 2h 2.656 (0.831) 1.970 (0.785) <0.001 

SpO2, Fourier entropy (bins=100), 6h 2.941 (0.521) 2.117 (0.805) <0.001 

SpO2, Gibb’s index (m=2), 6h 0.657 (0.227) 0.816 (0.183) <0.001 

SpO2, index mass quantile (Q=0.6), 24h 0.601 (0.092) 0.599 (0.004) <0.001 

SpO2, ranvr, 3h 0.008 (0.006) 0.014 (0.008) <0.001 

SpO2, cross spectral density (Welch’s method), 12h 71.981 (85.121) 270.278 (253.700) <0.001 

SpO2, vmr, 3h 0.042 (0.043) 0.168 (0.154) <0.001 

SpO2, winsorized mean, 12h 98.664 (1.109) 96.804 (1.925) <0.001 

Abbreviations: HR, heart rate measured from an electrocardiogram; Pulse, heart rate measured from a pulse oximeter; SpO2, oxygen saturation. 

 

From SpO2 data, features related to qualitative variation and those derived from 

decorrelation time methods were chosen. While the control group exhibited 

remarkably uniform decorrelation times across observation windows of 1, 2, 3, and 

6 hours prior to the evaluation time (index time, t=0), the sepsis group demonstrated 

a progressive increase in decorrelation time as the observation window expanded. 

Furthermore, the Gibb's index was significantly higher in the sepsis group. 

To evaluate the correlation among the 247,000 continuous vital sign features 

generated in this study, specifically among the selected features, we calculated an 

absolute correlation map (Figure 3-2, Figure 3-3, Figure 3-4, Figure 3-5). In the all-

cause mortality correlation matrix, we observed that pulse oximeter-derived heart 

rate, which often excluded from analysis due to its perceived lower reliability, 

exhibited a correlation with all-cause mortality similar to that of ECG-based heart 

rate. A comparable correlation pattern was also evident for these features in relation 

to late-onset sepsis. 
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Figure 3-2. Absolute correlation matrix diagram in all-cause mortality (A) 

Features clustering dendrogram, with leaves representing individual features 

and nodes indicating clusters. (B) Features grouped by vital sign type. 

 

 

Figure 3-3. Absolute correlation matrix diagram of selected feature in all-

cause mortality. 
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Figure 3-4. Absolute correlation matrix in late onset sepsis. (A) Features 

clustering dendrogram, with leaves representing individual features and nodes 

indicating clusters. (B) Features grouped by vital sign type. 

 

 

Figure 3-5. Absolute correlation diagram of selected features in late onset 

sepsis. 
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3.3.1. Predictive Models Performance 

To assess model performance and robustness, we conducted both the internal 

validation cohort and the external validation cohort using the UVA dataset. Our 

models demonstrated high performance across both validation cohorts ( 

Table 3-5, Table 3-6, Table 3-7, Table 3-8).  

In the internal validation cohort, most models achieved a mean AUROC of over 

0.800, indicating excellent performance. Similarly, high performance was observed 

during the external validation. The Extra Trees Classifier showed the top 

performance, exhibiting a higher mean AUROC (0.865; 95% CI, 0.864 – 0.866) 

compared to other models. Notably, despite differences in demographics, data quality, 

and sampling rates between the two datasets, we observed the generalizability of the 

models. 

Table 3-5. Performance of predictive models using the proposed continuous 

vital sign analysis method frameworks for clinical critical events. 

 Internal Validation Cohort    

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision F1 Score 

Proposed Analytic Methods       

Logistic Regression 0.929 0.842 (0.939-0.845) 0.441 0.400 0.423 0.412 

Naïve Bayes 0.870 0.818 (0.815-0.822) 0.347 0.636 0.267 0.376 

Random Forest Classifier 0.919 0.856 (0.853-0.859) 0.506 0.522 0.386 0.444 

Extra Trees Classifier 0.926 0.879 (0.877-0.859) 0.506 0.504 0.418 0.457 

Ada Boost Classifier 0.933 0.861 (0.858-0.865) 0.505 0.421 0.457 0.439 

Gradient Boosting Classifier 0.920 0.851 (0.847-0.854) 0.448  0.470 0.381 0.421 

Decision Tree Classifier 0.862 0.618 (0.619-0.625) 0.140 0.339 0.177 0.233 

MLP Classifier 0.892 0.745 (0.741-0.749) 0.274 0.405 0.262 0.318 

Abbreviations: AP, average precision; AUROC, area under the receiver operating characteristic curve; MLP, multi-layer perceptron. 
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Table 3-6. Performance of predictive models using the proposed continuous 

vital sign analysis method frameworks for all-cause mortality. 

 External Validation Cohort    

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision F1 Score 

Proposed Analytic Methods       

Logistic Regression 0.759 0.792 (0.788-0.797) 0.294 0.665 0.158 0.255 

Naïve Bayes 0.068 0.501 (0.500-0.502) 0.084 0.994 0.062 0.117 

Random Forest Classifier 0.907 0.837 (0.833-0.841) 0.419 0.411 0.311 0.354 

Extra Trees Classifier 0.943 0.873 (0.869-0.877) 0.539 0.382 0.564 0.379 

Ada Boost Classifier 0.832 0.827 (0.823-0.830) 0.343 0.559 0.198 0.292 

Gradient Boosting Classifier 0.920 0.824 (0.819 -0.829) 0.403 0.391 0.367 0.379 

Decision Tree Classifier 0.868 0.632 (0.627-0.637) 0.145 0.368 0.198 0.257 

MLP Classifier 0.516 0.677 (0.672-0.682) 0.145 0.753 0.091 0.162 

Abbreviations: AP, average precision; AUROC, area under the receiver operating characteristic curve; MLP, multi-layer perceptron. 

 

Table 3-7. Performance of real-time predictive models using the proposed 

continuous vital sign analysis method frameworks for clinical critical events. 

 Internal Validation Cohort    

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision F1 Score 

Proposed Analytic Methods       

Logistic Regression 0.942 0.852 (0.852-0.853) 0.416 0.400 0.423 0.412 

Naïve Bayes 0.876 0.820 (0.819-0.821) 0.271 0.636 0.267 0.376 

Random Forest Classifier 0.944 0.872 (0.871-0.873) 0.441 0.522 0.386 0.444 

Extra Trees Classifier 0.946 0.891 (0.891-0.892) 0.468 0.504 0.418 0.457 

Ada Boost Classifier 0.933 0.865 (0.865-0.866) 0.445 0.421 0.457 0.439 

Gradient Boosting Classifier 0.933 0.862 (0.862-0.863) 0.402  0.470 0.381 0.421 

Decision Tree Classifier 0.862 0.617 (0.617-0.618) 0.101 0.339 0.177 0.233 

MLP Classifier 0.900 0.757 (0.756-0.758) 0.227 0.405 0.262 0.318 

Abbreviations: AP, average precision; AUROC, area under the receiver operating characteristic curve; MLP, multi-layer perceptron. 

 

Table 3-8. Performance of real-time predictive models using the proposed 

continuous vital sign analysis method frameworks for all-cause mortality. 

 External Validation Cohort    

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision F1 Score 

Proposed Analytic Methods       

Logistic Regression 0.759 0.758 (0.757-0.760) 0.216 0.665 0.158 0.255 

Naïve Bayes 0.068 0.500 (0.499-0.500) 0.062 0.994 0.062 0.117 

Random Forest Classifier 0.909 0.837 (0.836-0.838) 0.353 0.405 0.317 0.355 

Extra Trees Classifier 0.944 0.865 (0.864-0.866) 0.471 0.372 0.577 0.452 

Ada Boost Classifier 0.832 0.807 (0.807-0.808) 0.264 0.559 0.198 0.221 

Gradient Boosting Classifier 0.920 0.813 (0.812 -0.814) 0.350 0.391 0.367 0.379 

Decision Tree Classifier 0.868 0.634 (0.633-0.635) 0.112 0.368 0.198 0.257 

MLP Classifier 0.516 0.663 (0.663-0.664) 0.104 0.753 0.091 0.162 

Abbreviations: AP, average precision; AUROC, area under the receiver operating characteristic curve; MLP, multi-layer perceptron. 
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Figure 3-6. Clinical critical event predictive models AUROC performance: (A) 

Internal validation cohort, (B) External validation cohort. 

 

Figure 3-7. Real-Time clinical critical event predictive models AUROC 

performance (A) Internal validation cohort, (B) External validation cohort. 

 

3.4. Discussion 

 

This study identified features associated with all-cause mortality and LONS in the 

admitted preterm infants using continuous vital sign data, subsequently developing 
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the predictive model with high performance and demonstrated generalizability in an 

external validation cohort. The Extra Trees model demonstrated the top 

discrimination performance, achieving an AUROC of 0.891 (95% CI, 0.891–0.892) 

in the internal validation cohort and 0.865 (95% CI, 0.864–0.866) in the external 

validation cohort, evaluating robust performance across both cohorts. Furthermore, 

the selected features were consistent with existing indicators and revealed novel 

utility from other domains. 

Many studies have focused on identifying key risk factors and predictors for 

mortality (including sudden infant deaths) and clinical deterioration in vulnerable 

preterm infants within the NICU. This often involves integrating these insights with 

artificial intelligence technologies for early detection. However, despite achieving 

high performance in internal validation, most studies do not sufficiently address 

external validation [64, 128]. Consequently, fundamental questions regarding 

reproducibility and generalizability remain unaddressed, significantly impeding the 

implementation of these predictive models in routine NICU clinical practice. In this 

study, we demonstrated that our predictive model achieved high performance and 

generalizability when applied to continuous vital sign data from an external 

institution, utilizing the same feature calculation methods as the development cohort 

without additional processing or calibration. This outcome suggests that continuous 

vital sign-based features might mitigate limitations inherent to EMR-based 

predictive models, which often suffer from significant inter-institutional and inter-

clinician variability [40]. Furthermore, the consistent high performance across 

various patient monitor manufacturers suggests the broad adaptability of these 

models for predicting preterm infant deterioration without requiring additional 

equipment. 

This study identified low heart rate entropy and decorrelation time as key 
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features. While entropy-based heart rate features were frequently cited in research, 

their utility has often been limited by significant inter-institutional variability, 

making them robust only within single institutions [27, 40]. We validated the 

importance of low heart rate sample entropy, a consistently identified key feature in 

prior work, while simultaneously introducing heart rate decorrelation time, which 

demonstrated potential for more robust applications. Notably, despite the known 

heterogeneity in NICU settings leading to substantial inter-institutional variability in 

sample entropy values, both institutions in this study showed consistently high 

contributions from this feature. Such discrepancies have often been attributed to 

demographic differences and measurement equipment. However, most previous 

research on entropy-based features has reduced data resolution through techniques 

like segmenting vital signs, random sampling, or using grand means/medians [30, 

34, 35, 39]. This was primarily due to the computational demands of large-volume 

continuous vital signs and the high resource requirements for approximate and 

sample entropy. These approaches, while computationally efficient, limit 

reproducibility due to disparate aggregation methods and risk missing subtle preterm 

symptoms by downsampling high-frequency data. Our study mitigated these issues 

by directly utilizing up to 24 hours of continuous vital signs, identifying sample 

entropy as a highly interpretable and discriminative indicator when derived from 

high-resolution, high-frequency data collected via bedside patient monitors. This 

was further supported by consistent findings across both pulse oximetry and ECG 

measurements. 

※ This chapter will be submitted to a peer-reviewed journal for publication.  
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Chapter 4. Predictive Modeling of 

Extubation Readiness in Preterm 

Infants Using Real-Time Physiological 

Data 
 

 

4.1. Introduction 

 

Preterm infants frequently require endotracheal intubation and invasive 

mechanical ventilation during the early postnatal period, primarily due to pulmonary 

immaturity, insufficient central respiratory drive, and surfactant deficiency. Although 

mechanical ventilation is an important component of neonatal intensive care, 

prolonged use is associated with increased risks of bronchopulmonary dysplasia, 

neurodevelopmental sequelae, and all-cause neonatal mortality [129, 130].  

In this chapter, we developed and validated a predictive model for extubation 

success within 24 hours in preterm infants, using the proposed continuous vital sign 

feature analysis framework. This study aimed to validate the hypothesis that features 

derived from continuous vital sign time series data provide additional, clinically 

meaningful information not detected by conventional traditional EMR-based 

features. To evaluate this, model performance was compared against the previously 

developed EMR-based NeXT Predictor [131] under identical experimental 

conditions, to assess the potential superiority of the proposed approach.  
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4.2. Methods 

 

4.2.1. Study Design 

This study was approved by the Institutional Review Board of SNUBH (IRB No. X-

2205-759-901). In this retrospective study, we used continuous vital sign data 

recorded from bedside patient monitors in the NICU, as well as demographic 

information extracted from EMR. The study population included inborn infants 

admitted to the NICU at SNUBH between March 2018 and December 2022. 

 

4.2.2. Eligibility Criteria and Outcome 

This study enrolled preterm infants born at less than 32 weeks of GA who were 

managed with mechanical ventilation via an endotracheal tube and underwent their 

planned extubation attempt prior to 36 weeks of postmenstrual age (PMA). Infants 

with major congenital anomalies or structural airway abnormalities were excluded, 

as were those extubated within 6 hours of initial intubation. Only infants intubated 

for more than 6 hours were included, thereby excluding cases of procedural 

intubation. Unplanned extubations were excluded. Planned extubation was set as the 

index (t=0) for outcome evaluation. The observation period was from NICU 

admission to index data collection. 

The primary outcome was the success or failure of the planned extubation in 

preterm infants. Extubation success was defined as the absence of reintubation 

within 72 hours following the planned extubation. Reintubations occurring within 

10 minutes of extubation were excluded from the analysis, as it was not feasible to 

reliably discriminate between true extubation failure and events such as unplanned 

self-extubation or a misplaced endotracheal tube. 
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4.2.3. Predictors 

In this study, predictors for modeling extubation readiness in preterm infants were 

derived using the continuous vital sign analysis framework described in the 

preceding chapter. The dataset included all routinely collected vital signs from 

patient monitors, including heart rate, pulse, oxygen saturation, blood pressure, and 

respiratory rate. To assess both short- and long-term physiological dynamics, feature 

observation windows were defined at intervals of 1, 2, 3, 6, 12, and 24 hours. For 

each window, all possible combinations of time intervals, feature extraction methods, 

and vital sign modalities were generated to construct a comprehensive feature set. In 

cases where more than 50% of data within a given observation window were missing, 

the corresponding feature was treated as missing value. 

In previous NeXT-Predictor study, clinical and physiological data were 

retrospectively analyzed to identify potential predictors of extubation failure [131]. 

Data was collected prior to extubation and, when applicable, prior to reintubation. 

Routinely recorded vital signs—including heart rate, respiratory rate, body 

temperature, oxygen saturation, and blood pressure—were included. Candidate 

predictors derived from GA, birth weight, PMA at the time of extubation, male sex, 

pre-extubation arterial blood gas measurements (pH and partial pressure of carbon 

dioxide [pCO2]), and ventilator settings such as the fraction of inspired oxygen 

(FiO2), positive end-expiratory pressure (PEEP), mean airway pressure (MAP), and 

ventilator respiratory rate setting. In addition, respiratory indices, including the 

SpO2/FiO2 (SF) ratio [132], Respiratory Rate Oxygenation (ROX) index [133], 

respiratory severity score (RSS) were evaluated. Predictive features were derived by 

applying time-domain methods to vital sign variables that were periodically 

measured from admission to the index time point (Table 4-1).  
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Missing data from ventilator setting was imputed using the last observation 

carried forward (LOCF) method. This approach was selected for two reasons. First, 

it helps preserve the original distribution of the data, which was critical given that 

this study focused on the variability of physiological parameters; minimizing the 

introduction of artificial bias or distortion of statistical properties was essential. 

Second, most missing values were for ventilator settings, which EMR recorded only 

when clinicians made substantial adjustments. In contrast, vital signs were 

continuously and automatically recorded, resulting in minimal data loss. Given this 

clinical context, we considered it reasonable to assume that unrecorded ventilator 

values likely remained consistent with prior entries, and any potential changes during 

the gap were presumed to be clinically insignificant.  

Table 4-1. Feature extraction method used in NExT predictor model [131]. 

Time domain 

methods 

Formula 

Mean 
𝑥 =

∑ 𝑋𝑖
𝑁
𝑖=1

𝑁
 

Standard 

Deviation 
s = √∑ (𝑌𝑖 − 𝑌)

2𝑁

𝑖=1
/𝑁 

Outlying ∑ 𝑥𝑜𝑢𝑡𝑙𝑖𝑒𝑟

∑ 𝑥𝑖

 𝑤ℎ𝑒𝑟𝑒 𝑥𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∉ 𝐴, 𝐴 = {𝑥|𝑥0.25 − 1.5 × 𝐼𝑄𝑅 < 𝑥 < 𝑥0.85 + 1.5 ×. 𝐼𝑄𝑅) 

Sequential 

difference Mean 

𝑥 =
∑ Δ𝑋𝑖

𝑁
𝑖=1

𝑁
 Lag difference (lag-1 difference) 

Sequential 

difference of 

Standard 

Deviation 

s = √∑ (Δ𝑌𝑖 − Δ𝑌)
2𝑁

𝑖=1
/𝑁 

Sequential 

difference 

Outlying 

∑ Δ𝑥𝑜𝑢𝑡𝑙𝑖𝑒𝑟

∑ 𝛥𝑥𝑖

 𝑤ℎ𝑒𝑟𝑒 𝛥𝑥𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∉ 𝐴, 𝐴 = {𝛥𝑥|𝛥𝑥0.25 − 1.5 × 𝐼𝑄𝑅 < 𝛥𝑥 < 𝛥𝑥0.85 + 1.5 ×. 𝐼𝑄𝑅) 

Trend nonparametric Mann-Kendall test 

Periodicity Fourier coefficient 

Randomness 
rk =  

∑ (𝑌 − 𝑌)(𝑌𝑖+𝑘 − 𝑌)𝑁−𝑘
𝑖=1

∑ (𝑌𝑖 − 𝑌)
2

𝑁
𝑖=1
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4.2.4. Statistical Analysis  

Baseline characteristics were analyzed using descriptive statistics. The distribution 

of continuous variables was assessed for normality using the Kolmogorov–Smirnov 

test. Variables following a normal distribution were reported as mean with standard 

deviation (SD) and were compared using two-tailed Student’s t tests. Non-normally 

distributed variables were reported as median with interquartile range (IQR) and 

were analyzed using the Mann–Whitney U test. Categorical variables were compared 

using either the Chi-Square test or Fisher’s exact test, as appropriate. Variables with 

more than 50% missing data were excluded from the analysis. 

Within the proposed continuous vital sign analysis framework, we conducted 

200 iterations of bootstrap resampling with replacement to identify candidate 

predictive features. To address the high dimensionality of the resulting feature set 

relative to the sample size and to mitigate multicollinearity, variance inflation factor 

(VIF) analysis was employed. Features with the highest VIF values were iteratively 

removed, beginning with the most redundant, until a parsimonious and stable feature 

set was finalized for model development. 

In in NExT-Predictor, Statistical analyses were conducted using the statsmodels 

[94] and tableone [134] Python libraries. Propensity score matching was applied to 

identify candidate features that showed statistically significant differences between 

the outcome and control groups. Univariable analyses were used to estimate adjusted 

odds ratios (ORs) and marginal effects for each predictor, with GA and birth weight 

included as covariates due to their known influence on extubation outcomes in 

preterm infants. Continuous variables were assessed at the time of extubation using 

univariable methods, such as Student’s t test, while categorical variables were 

evaluated using the Chi-Square test for baseline comparisons. 
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4.2.5. Predictive Model Development and Evaluation  

All classification models were developed using the PyCaret machine learning library 

(v3.0) [124], which provided a unified API for model training, preprocessing, and 

evaluation. The models included logistic regression, decision tree (DT), extra tree 

forest(ET), random forest (RF), gradient boosting machine (GBM), stochastic 

gradient descent (SGD) classifier, naïve Bayes (NB), and extreme gradient boosting 

(XGBoost). PyCaret’s classification module was used to automate pipeline 

construction, including standardization, imputation, and cross-validation. 

Hyperparameters were optimized using grid search within PyCaret’s built-in tuning 

function. This approach enabled consistent preprocessing and fair comparison across 

model types representing linear, probabilistic, and ensemble-based learning 

algorithms. The development cohort was used for model development, including 

stratified 10-fold cross-validation and hyperparameter tuning via grid search, with 

F1 score as the primary optimization metric. The internal validation set, held out 

from the initial split, was used only for final performance evaluation to ensure an 

unbiased assessment. Details of the hyperparameter configurations and search spaces 

are provided in Table 4-2. To avoid data leakage, all model tuning and selection were 

performed strictly to the training data in the development cohort. 
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Table 4-2. Hyperparameters for developing prediction models. 

Classifier Parameter name Parameter range 

Logistic Regression C 0.001 – 1,000 

Penalty None, L1, L2 

Class Weight None, Balanced 

Random Forest number of estimators 50, 100, 300, 600, 1000, 

2000 

Maximum Depth 3, 5, 10, Inf  

Criterion gini coefficient, entropy 

Gradient Boosting Loss Deviance, Exponential 

Learning Rate 0.01 – 1.0 

number of estimators 50, 100, 300, 600, 1000, 

2000 

Maximum Depth 3, 5, 10 

XGBoost Learning Rate 0.01, 0.1, 0.3, 1.0 

number of estimators 50, 100, 300, 600, 1000, 

2000 

Maximum Depth 3, 5, 10, 15 

Minimum Child Weight 1,3,5 

Stochastic Gradient 

Decent 

Loss Modified Huber, Log 

Alpha 0.0001, 0.00001, 0.000001 

Penalty L2, Elasticnet 

Decision Tree Criterion Gini Coefficient, Entropy 

Maximum Depth 2, 4, 6, 8, 10, 12 

Complement Naïve 

Bayesian 

Alpha 0.001 – 1,000,000 

Fit Prior 1, 0 

Normalization 1, 0 

 

Model discrimination was evaluated using multiple performance metrics, 

including accuracy, the area under the receiver operating characteristic curve 

(AUROC), the area under the precision–recall curve (AUPRC), positive predictive 

value (PPV), and negative predictive value (NPV).  
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4.3. Results 

 

4.3.1. Study Population 

A total of 253 preterm infants met the inclusion criteria and were enrolled during the 

study period. Of these, 185 infants (73%), born between March 2018 and December 

2021, were assigned to the development cohort, and 68 infants (27%), born in 2022, 

were allocated to the internal validation cohort. Extubation failure occurred in 69 

infants (26%) across the entire study population—53 infants (29%) in the 

development cohort and 16 infants (24%) in the internal validation cohort. 

 

 

Figure 4-1. Development and internal validation cohort to identify predictors 

and develop predictive models. 

Table 4-3, Table 4-4 show a summary of the baseline characteristics within the 

development cohort and the internal validation cohort, respectively. In the 
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development cohort, the mean (SD) GA was 27.3 (2.5) and 29.2 (2.7) weeks in the 

extubation and the extubation success group, respectively. The mean (SD) birth 

weight was 896.7g (367.5) and 1,203.6g (472.9), respectively. There were no 

statistically significant differences in ventilator settings at the time of extubation as 

determined by the clinicians between the two groups. FiO2 was 0.30 (0.05) in the 

extubation success group and 0.32 (0.06) in the failure group; PEEP was 5.2 (1.1) 

and 5.3 (1.0) cmH2O; MAP was 9.6 (1.5) vs 9.7 (1.6) cmH2O, respectively.  

In the internal validation cohort, the mean (SD) GA was 25.5 (1.5) and 29.5 

(2.7) weeks in the extubation and the extubation success group. The mean (SD) of 

birth weight was 896.7g (367.5) and 1,203.6g (472.9), consistent with baseline 

characteristics observed in the development cohort. Similarly, no statistically 

significant differences in ventilator settings at the time of extubation, as determined 

by the clinicians, were found between the two groups. 

 

Table 4-3. Baseline characteristics in the development cohort. 

 Development Cohort  

Characteristics All Extubation 

Success Group 

Extubation  

Failure Group 

p-value  

Number of infants 185 132 53  

Gestational Age, mean (SD), weeks 28.7 (2.8) 29.2 (2.7) 27.3 (2.5) <0.001 

Birth weight, mean (SD), g 1135.0 (468.7) 1203.6 (472.9) 896.7 (357.5) <0.001 

Gender, n (%)     

Female 118 (43.2) 92 (43.4) 26 (42.6) 1.000 

Male 155 (56.8) 120 (56.6) 35 (57.4)  

PMA at extubation (weeks) 31.3 (2.1) 31.5 (2.0) 30.7 (2.3) 0.004 

Ventilation Variables     

FiO2, mean (SD),  0.26 (0.09) 0.24 (0.07) 0.32 (0.11) 0.001 

PEEP, mean (SD), cm H2O 5.8 (0.8) 5.6 (0.7) 6.0 (0.8) 0.001 

MAP, mean (SD), cm H2O 8.8 (1.6) 8.5 (1.3) 9.4 (2.0) 0.001 

Frequency mean (SD), rpm 31.6 (6.4) 31.5 (6.0) 32.1 (7.4) 0.511 

Ventilation Variables after Post Extubation     

FiO2, mean (SD),  0.30 (0.09) 0.27 (0.07) 0.35 (0.10) <0.001 

PEEP, mean (SD), cm H2O 5.9 (0.7) 5.7 (0.7) 6.2 (0.7) <0.001 

MAP, mean (SD), cm H2O 9.1 (1.9) 8.5 (1.6) 9.5 (2.0) 0.002 

Frequency mean (SD), rpm 34.1 (9.1) 34.1 (9.2) 34.1 (9.0) 0.992 

Abbreviations: FiO2, faction of inspired oxygen; MAP, mean airway pressure; PEEP, positive end-expiratory pressure PMA, postmenstrual age. 
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Table 4-4. Baseline characteristics in the internal validation cohort. 

 Internal Validation Cohort  

Characteristics All Extubation  

Success Group 

Extubation  

Failure Group 

p-value  

Number of infants 68 52 16  

Gestational Age, mean (SD), weeks 29.0 (2.7) 29.8 (2.5) 26.4 (1.9) <0.001 

Birth weight, mean (SD), g 1139.3 (459.2) 1240.2 (471.8) 711.2 (187.3) <0.001 

Gender, n (%)     

Female 36 (52.9) 27 (51.9) 9 (56.2) 0.987 

Male 32 (47.1) 25 (48.1) 7 (43.8)  

PMA at extubation (weeks) 30.9 (1.9) 31.1 (1.9) 30.5 (2.0) 0.145 

Ventilation Variables     

FiO2, mean (SD),  0.28 (0.11) 0.24 (0.10) 0.35 (0.10) <0.001 

PEEP, mean (SD), cm H2O 6.4 (0.9) 6.1 (0.8) 7.0 (0.7) <0.001 

MAP, mean (SD), cm H2O 10.7 (2.4) 10.3 (2.5) 11.1 (2.3) 0.152 

Frequency mean (SD), rpm 28.0 (4.6) 28.0 (4.6) 28.1 (4.6) 0.914 

Ventilation Variables after Post Extubation     

FiO2, mean (SD),  0.30 (0.09) 0.27 (0.07) 0.37 (0.08) <0.001 

PEEP, mean (SD), cm H2O 6.5 (0.9) 6.2 (0.9) 7.1 (0.7) <0.001 

MAP, mean (SD), cm H2O 11.6 (3.2) 11.8 (4.3) 11.5 (2.5) 0.786 

Frequency mean (SD), rpm 31.3 (6.2) 34.6 (5.6) 30.2 (6.0) 0.024 

Abbreviations: FiO2, faction of inspired oxygen; MAP, mean airway pressure; PEEP, positive end-expiratory pressure PMA, postmenstrual age. 

 

 

4.3.2. Predictors of Extubation Failure 

To analyze the selected continuous vital sign features relevant to extubation 

readiness, their mean and standard deviation were calculated at a simulated 

extubation assessment time point. Variables significantly associated with extubation 

failure are detailed in Table 4-5. At the time of extubation assessment, heart rate 

decorrelation time was notably longer in the extubation failure group (14.857 [5.639]) 

compared to the extubation success group (12.846 [4.857]). Heart rate skewness also 

consistently exhibited negative values across the entire observation window for the 

extubation failure group. Similarly, pulse decorrelation time, as measured by pulse 

oximetry, was prolonged in the extubation failure group. Furthermore, oxygen 

saturation (SpO2) in the extubation failure group demonstrated greater variation and 

lower mean values.  
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Table 4-5. Clinically relevant features identified for extubation. 

Features Extubation Success Extubation Failure  p-value 

HR, decorrelation time; 12h, mean (SD) 12.846 (4.857) 14.857 (5.639) 0.002 

HR, quantile (q=0.9), 1h 162.652(14.326) 168.785 (14.,925) 0.001 

HR, quantile (q=0.75), 1h 154.961 (13.762) 163.500 (14.654) <0.001 

HR, skew, 6h  0.195 (1.836) -0.740 (2.267) <0.001 

HR, skew, 1h 0.403 (1.402) -0.351 (1.438) <0.001 

HR., skew, 24h -0.049 (1.787) -0.848 (2.112) 0.001 

Pulse, decorrelation time, 24h 24.483 (10.234) 29.276 (10.058) <0.001 

Pulse, decorrelation time, 12h 4.983 (6.506) 7.367 (8.353) 0.009 

SpO2, approximate entropy (m=2, r=0.1), 12h 0.858 (0.366) 1.088 (0.288) <0.001 

SpO2, harmonic mean, 3h 97.760 (1.951) 95.914 (2.620) <0.001 

SpO2, mode absolute deviation,1h 1.636 (1.489) 2.676 (1.631) <0.001 

SpO2, mode absolute deviation,24h 1.742 (1.144) 2.627 (1.299) <0.001 

SpO2, permutation entropy (d=7, tau=1), 2h 3.486 (1.433) 4.295 (0.988) <0.001 

SpO2, q statistic, 6h 77.012 (56.097) 125.697 (67.160) <0.001 

Abbreviations: HR, heart rate measured from an electrocardiogram; Pulse, heart rate measured from a pulse oximeter; SpO2, oxygen saturation. 

 

4.3.3. Model Performance 

Model training results based on the proposed continuous vital sign analytics 

framework are summarized in Table 4-6. Among the candidate models, the logistic 

regression classifier using continuous vital sign–derived features achieved the 

highest discriminatory performance in the internal validation cohort, with an 

AUROC of 0.976 (95% CI, 0.974–0.978), indicating high discrimination and 

outperforming all other models [135] (Table 4-6).  

 

Table 4-6. Performance of predictive models utilizing the proposed continuous 

vital sign analysis methodology. 

 Internal Validation Cohort    

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision F1 Score 

Proposed Analytic Methods       

Logistic Regression 0.928 0.976 (0.974-0.978) 0.901 0.872 0.815 0.842 

Naïve Bayes 0.861 0.935 (0.932-0.938) 0.729 0.908 0.594 0.719 

Random Forest Classifier 0,864 0.961 (0.959-0.963) 0.868 0.833 0.761 0.795 

Extra Trees Classifier 0.838 0.953 (0.950-0.955) 0.864 0.816 0.792 0.804 

Ada Boost Classifier 0.860 0.928 (0.924-0.932) 0.753 0.778 0.830 0.803 

Gradient Boosting Classifier 0.916 0.950 (0.947-0.952) 0.841  0.778 0.830 0.803 

Decision Tree Classifier 0.847 0.682 (0.675-0.689) 0.456 0.403 0.805 0.537 

MLP Classifier 0.899 0.917 (0.913-0.922) 0.806 0.681 0.821 0.775 

Abbreviations: AP, average precision; AUROC, area under the receiver operating characteristic curve; MLP, multi-layer perceptron. 
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4.4. Discussion 

 

In this study, we developed a predictive model using continuously recorded vital 

signs obtained directly from patient monitors, combined with the proposed analytic 

framework for feature extraction and selection. The model demonstrated superior 

performance compared with conventional EMR-based models. Evaluation metrics, 

including the AUROC, F1 score, and accuracy, indicated consistently high 

discriminative ability and calibration across both the development and internal 

validation cohorts.  

The extubation success rate from our dataset's source institution, using the more 

recent internal validation cohort, showed the NExT-Predictor model achieving an 

AUROC of 0.752. This performance surpasses that of Gupta et al.[130]'s predictive 

model but remains relatively lower compared to models utilizing continuous vital 

sign-derived predictors. In contrast, models based on continuous vital sign data 

demonstrated exceptionally high AUROC, average precision, and strong calibration. 

We hypothesized this discrepancy occurs because models heavily reliant on EMR 

data are more vulnerable to clinician input variability and human error. The demand 

for continuous physiological predictors grows because EMR data input is clinician-

dependent, with documentation frequency increasing in deteriorating or vulnerable 

infants. This introduces potential data bias. Therefore, we expect that continuous 

vital sign-based predictors could effectively address the limitations of prominent 

EMR-based predictors that currently affect clinical translation due to significant 

inter-institutional variability [40].  

In this study, the key features selected for the model were derived from time-

domain and frequency-domain methods, which uniquely accessible via continuous 

time series analysis. These features contributed to the model's high predictive 
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performance. From oxygen saturation, key features extracted included the 

approximate entropy, permutation entropy, harmonic mean, q statistics, and mode 

absolute deviation within the 24 hours preceding extubation. These results are highly 

consistent with the indicators of ROP and intermittent hypoxia previously 

demonstrated by Di Fiore, et al. [136]. 

In NICUs, extubation decisions for preterm infants are primarily determined by 

clinical judgment, resulting in substantial variability in practice and frequent 

extubation failure [129, 137-139]. While outcomes vary across studies, only 60% to 

73% of extremely low birth weight infants are reported to be successfully extubated 

[138]. Preterm infants who experience extubation failure are at increased risk of 

respiratory deterioration and fluctuations in cerebral blood flow and oxygenation. 

Such failure, followed by reintubation, is associated with an extended duration of 

mechanical ventilation, typically by 10 to 12 days [137-140]. Prolonged use of 

mechanical ventilation has been associated with an increased incidence of BPD and 

neurodevelopmental complications [137, 138, 141]. Reintubation, in a select subset 

of preterm infants, has been shown to increase the risk of BPD or death 

independently of the length of time spent on mechanical ventilation [139]. Overall, 

determining the optimal timing for extubation is essential to enhancing both short- 

and long-term outcomes in preterm infants. While several predictive tools have been 

developed to assess extubation readiness, consistent and reliable methods remain 

limited in clinical settings. 

This study identified features from real-time patient monitor data to assess 

extubation readiness, and the resulting predictive model demonstrated high 

classification accuracy for extubation success. Our findings suggest the critical role 

of subtle differences in pulmonary oxygenation capacity for successful extubation in 

preterm infants. We expect these discoveries will form the basis for future high-
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performance extubation readiness models, providing clinicians with improved 

decision-making tools. Furthermore, we anticipate that integrating the key predictors 

identified in this research with features from prior studies will lead to substantial 

model improvements and contribute to defining more precise extubation decision 

guidelines.  

※ This chapter is based on the previously published paper, [131] W. Song, Y. Hwa 

Jung, J. Cho, H. Baek, C. Won Choi, and S. Yoo, "Development and validation of a 

prediction model for evaluating extubation readiness in preterm infants," Int J Med 

Inform, vol. 178, p. 105192, Oct 2023.  
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Chapter 5. New physiological Risk 

Factor of Intraventricular 

Hemorrhage of Preterm Infant 
 

 

5.1. Introduction 

 

IVH is a major cause of morbidity in very low birth weight (VLBW) infants and is 

associated with both short-term [142, 143] and long-term neurodevelopmental 

impairment [144-146]. The incidence of IVH in VLBW infants was estimated at 50% 

in the 1970s [146, 147]. With improvements in neonatal intensive care practices, the 

incidence declined to around 20% by the 1990s [145, 148]. Since the early 2000s, 

however, IVH rates have remained relatively stable [9, 145, 149]. The pathogenesis 

of IVH is multifactorial, primarily involving structural immaturity of the cerebral 

vasculature in preterm infants and impaired autoregulation of cerebral blood flow, 

both of which contribute to the rupture of fragile vessels within the germinal matrix 

[150, 151]. IVH has been associated with a range of clinical risk factors reflecting 

its underlying pathophysiology, including perinatal hypoxic-ischemic injury, 

respiratory distress syndrome, systemic hypotension, metabolic acidosis, 

hypercapnia, coagulation and platelet dysfunction, hypothermia, and hyperglycemia 

[150-152]. Current neonatal intensive care practices have focused on mitigating 

known risk factors to reduce the incidence of IVH. However, the incidence has not 

significantly declined and remains high among infants born at <32 weeks’ GA or 

with birth weight <1,500 g [144]. 

Cranial ultrasound (cUS) is widely used as the standard imaging modality for 

diagnosing IVH in preterm infants [153]. However, because it is typically performed 
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at scheduled intervals and IVH often occurs without any clinical signs, the condition 

may go undetected for several hours or even days after onset [154]. Early 

identification of infants at risk allows for timely, targeted interventions to reduce the 

likelihood of further brain injury and improve long-term outcomes [155].  

In this study, we identified risk factors for early IVH detection using the 

previously proposed framework. We also demonstrated the utility of applying 

analytical methods from other domains, not traditionally used in time series analysis, 

within our framework for actual IVH identification. 

 

 

5.2. Methods 

 

5.2.1. Study Design 

This study was approved by the Institutional Review Board of SNUBH (IRB No. X-

2409-926-902). As a retrospective secondary analysis utilizing de-identified medical 

records, the requirement for informed consent was waived. The study followed the 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

guidelines for case-control studies [156]. 

In this study, we included preterm infants admitted to the NICU of SNUBH 

between March 2018 and December 2022. Infants born at a GA of less than 32 weeks 

or with a birth weight below 1,500 grams were included in this study. Exclusion 

criteria included death within 24 hours of birth, major congenital anomalies, missing 

maternal data, or initiation of vital sign monitoring more than 3 hours after birth. 

 

5.2.2. Data sources 

Demographic and clinical variables were extracted from the EMR and NICU 
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discharge reports. These included antenatal and perinatal factors, maternal and 

delivery details, neonatal resuscitation data, umbilical cord blood gas values, 

postnatal arterial blood gas measurements, laboratory test results, and respiratory 

support parameters, including ventilator settings within the first 24 hours of life. 

Continuous vital sign data, including heart rate, respiratory rate, oxygen saturation, 

body temperature, and blood pressure, were recorded at 30s intervals using Philips 

Patient Monitoring systems equipped with standard clinical measurement 

devices. 

 

5.2.3. Case and Control Definition 

Case infants (IVH group) were identified based on a diagnosis of grade II or higher 

IVH within the first 7 days of life, confirmed by brain ultrasonography or other 

imaging modalities. The control group (non-IVH group) consisted of infants with no 

evidence of IVH beyond germinal matrix hemorrhage (GMH) or grade I IVH. 

Controls were randomly selected at a 2:1 ratio and individually matched to each case 

by GA (±1 week) and birth weight (±300 g). Magnetic resonance imaging findings 

were excluded from the analysis to ensure consistency in diagnostic criteria. 

 

5.2.4. Covariates 

This study aimed to identify clinically relevant risk factors for early intervention and 

prevention of IVH-related symptoms using routinely available monitoring data. The 

analysis was restricted to clinical variables and vital signs documented within the 

first 24 hours of life. Clinical covariates included demographic information, perinatal 

factors, IVH-related diagnoses, umbilical cord blood gas parameters, and neonatal 

resuscitation details. Considering that VLBW infants frequently require respiratory 
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support, we also calculated the Respiratory Severity Score (RSS), ROX index, and 

the oxygen saturation to fraction of inspired oxygen (SpO2/FiO2 or SF ratio) ratio 

[132, 133, 157]. To detect subtle variations in vital signs and potential disruptions in 

cerebral autoregulation, derived features were extracted using time-series analysis 

methods, time–frequency domain techniques, and decorrelation time analysis. 

 

5.2.5. Statistical Analysis 

Baseline characteristics were described using descriptive statistics. The distribution 

of continuous variables was assessed for normality using Kolmogorov–Smirnov test. 

Variables with a normal distribution are reported as mean with standard deviation 

(SD) and compared using two-tailed Student’s t-tests. Non-normally distributed 

variables were reported as median with interquartile range (IQR) and analyzed using 

the Mann–Whitney U test. Categorical data were compared using either the Chi-

Square test or Fisher’s exact test, as appropriate. Variables with more than 50% 

missing data were excluded from the analysis. 

To identify indicators associated with IVH, we applied the continuous vital sign 

analysis framework developed in this study to select key covariates. We then used 

multivariable logistic regression, adjusting for GA and birth weight, to assess the 

associations between IVH outcomes and these candidate covariates. Odds ratios 

(ORs) were calculated to quantify these associations. ORs and corresponding 95% 

confidence intervals (CIs) were estimated. 
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5.3. Results 

 

5.3.1. Study Design 

During the study period, 456 infants who met the inclusion criteria were admitted to 

the NICU. Of these, 70 were excluded due to congenital anomalies (n=7), death 

within the first day of life (n=4), or insufficient clinical data (n=49). Among the 386 

eligible infants, 71 were diagnosed with IVH, stratified by severity as follows: GMH 

or Grade I (n=42, 59%), Grade II (n=16, 23%), Grade III (n=5, 7%), and Grade IV 

(n=8, 11%). For the primary analysis, 29 infants with IVH and matched 58 non-IVH 

controls were selected (Figure 5-1). 

 

 

Figure 5-1. Flow diagram of inclusions and exclusions for the study. 

Table 5-1 shows a summary of the clinical characteristics of the two groups. 

The mean (SD) GA was 26.2 (2.7) and 26.9 (2.5) weeks in the IVH and the non-IVH 

groups, respectively. The mean (SD) birth weight was 865.0g (301.1) and 890.9g 

(323.0), respectively, with 4 (14.3%) and 14 (24.6%) infants being small for 
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gestational age (SGA). More infants in the IVH group received invasive ventilation 

at birth (27 [93.1%]) than those in the non-IVH group (41 [70.7%]). In terms of GA, 

birth weight, APGAR scores at 1 and 5 min, or prenatal characteristics, the groups 

were not significantly different. However, the base excess of cord blood gas analysis 

was less in the IVH group (mean [SD], -5.4 [5.1] mmol/L) than in their matched 

controls (-3.0 [3.1] mmol/L). No difference was found in the occurrence of persistent 

pulmonary hypertension among newborns (PPHN). Most clinical characteristics did 

not significantly differ between the two groups. The median (IQR) time of vital sign 

measurements after birth was 15 (9.25) min. The time to start patient monitoring did 

not differ between the IVH and non-IVH groups. 
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Table 5-1. Baseline characteristics. 

     

 All Case Control p-value 

Number of infants 87 29 58  

Perinatal factor     

Maternal age, mean (SD), y 34.7 (3.5) 34.3 (4.1) 34.9 (3.2) 0.445 

Maternal underlying disease     

Chorioamnionitis, n (%) 26 (29.9) 10 (34.5) 16 (27.6) 0.679 

GDM, n (%) 8 (7.3) 4 (13.8) 3 (5.2) 0.215† 

IVF, n (%) 18 (20.7) 6 (20.7) 12 (20.7) 1.000 

Oligohydramnios, n (%) 13 (14.9) 1 (3.4) 12 (20.7) 0.052† 

Preeclampsia, n (%) 24 (27.6) 4 (13.8) 20 (34.5) 0.075 

PROM, n (%) 34 (39.1) 13 (44.8) 21 (36.2) 0.587 

Prenatal antibiotics, n (%) 34 (39.1) 11 (37.9) 23 (39.7) 1.000 

Antenatal steroid, n (%) 4 (4.6) 3 (10.3) 1 (1.7) 0.106† 

Delivery mode, n (%)     

Cesarean section 62 (71.3) 17 (58.6) 45 (77.6) 0.112 

Gender, n (%)     

Female 42 (48.3) 12 (41.4) 30 (51.7) 0.495 

Male 45 (51.7) 17 (58.6) 28(48.3)  

Multiple Birth, n (%) 35 (40.2) 14 (48.3) 21 (36.2) 0.395 

Gestational age, mean (SD), weeks 26.6 (2.6) 26.2 (2.7) 26.9 (2.5) 0.253 

Birth weight, mean (SD), g 882.2 (314.4) 865.0 (301.1) 890.9 (323.0) 0.714 

Birth length, mean (SD), cm 34.3 (4.1) 34.5 (4.1) 34.2 (4.1) 0.790 

Birth Head Circumference, mean (SD), cm 23.8 (2.9) 24.3 (2.7) 23.7 (3.0) 0.378 

APGAR (1 minute), median (IQR) 4.0 [3.0-5.0] 3.0 [2.0-5.0] 4.0 [3.0-5.0] 0.138 

APGAR (5 minutes), median (IQR) 7.0 [6.0-8.0] 7.0 [5.0-8.0] 7.0 [6.0-8.0] 0.424 

APGAR (1 minute)<7, n (%) 81 (93.1) 26 (89.7) 55 (94.8) 0.396 

APGAR (5 minutes)<7, n (%) 30 (34.5) 12 (41.4) 18 (31.0) 0.473 

SGA, n (%) 18 (21.2) 4 (14.3) 14 (24.6) 0.419† 

Cord blood gas analysis     

pH, mean (SD) 7.3 (0.1) 7.3 (0.1) 7.3 (0.1) 0.138 

BE, mean (SD), mmol/L -3.8 (4.0) -5.4 (5.1) -3.0 (3.1) 0.045 

PCO2, mean (SD), mmHg 48.1 (13.7) 50.8 (19.7) 46.7 (9.6) 0.342 

Resuscitation     

PPV, n (%) 67 (77.0) 19 (65.6) 48 (82.8) 0.126 

Intubation, n (%) 58 (66.7) 21 (72.4) 37(63.8) 0.574 

Epinephrine, n (%) 2 (2.3) 1 (3.4) 1 (1.7) 1.000† 

CM, n (%) 2 (2.3) 1 (3.4) 1 (1.7) 1.000† 

RDS, n (%) 73 (83.9) 26 (89.7) 47 (81.0) 0.369 

Ventilatory support mode within 24 hours after birth     

Invasive Ventilation, n (%) 68 (78.2) 27 (93.1) 41 (70.7) 0.035 

HFOV, n (%) 27 (39.7) 11 (40.7) 16 (39.0) 1.000 

Conventional Ventilation, n (%) 41 (60.3) 16 (59.3) 25 (61.0) 1.000 

Inhaled NO within 24 hours after birth, n (%) 14 (16.1) 8 (27.6) 6 (10.3) 0.061 

Inotropics administration within 24 hours, n (%) 1 (1.1) 0 (0.0) 1 (1.7) 1.000† 

Laboratory finding within 24 hours after birth     

Blood gas analysis     

PCO2, mean (SD), mmHg 42.3 (7.3) 43.0 (6.6) 42.0 (7.6) 0.524 

pH, mean (SD) 7.3 (0.1) 7.2 (0.1) 7.3 (0.1) 0.112 

Hemoglobin, mean (SD), g/dl 14.8 (2.1) 14.7 (2.4) 14.8 (2.0) 0.915 

Abbreviations: BE, base excess of cord blood gas analysis; CM, cardiac massage; FiO2, fraction of inspired oxygen; GDM, gestational diabetes mellitus; HFOV, 

high frequency oscillatory ventilation; IVF, in vitro fertilization; NO, nitric oxide; PCO2, partial pressure of carbon dioxide; PPV, positive-pressure ventilation; PROM, 

premature rupture of membranes; RDS, respiratory distress syndrome. 
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5.3.2. Risk Factors Associated with IVH 

 Table 5-2 shows the results of univariable and multivariable analyses of the selected 

covariates. From 247,000 continuous vital sign candidate features, 20 features were 

selected. Several vital signal-related risk factors met the predefined p-value threshold. 

Among the demographic variables, we included preeclampsia, base excess, and 

resuscitation with positive pressure ventilation (PPV). After adjusting for 

multicollinearity, three covariates remained; only SpO2 decorrelation time was found 

to be significantly associated with IVH in the multivariable analysis ( Table 5-2). An 

increase in SpO2 decorrelation time was associated with a higher risk of IVH 

(adjusted OR [aOR], 1.53; 95% CI, 1.08–2.17 for per minute increase). Infants with 

SpO2 decorrelation time>5.62 minutes (56.2%), based on the optimal cutoff, had an 

11-fold increased risk of IVH compared with infants without such prolonged 

decorrelation time (aOR, 11.35; 95% CI, 3.54–36.38). 

 

 Table 5-2. Univariate and multivariable analysis of risk factors associated 

with IVH. 

Abbreviations: aOR, adjusted odds ratio; CI, confidence interval; MAD, mean absolute deviation; SBP, systolic blood pressure; SpO2, oxygen saturation. 

 

5.3.3. Oxygen Saturation Decorrelation Time 

The mean time for SpO2 decorrelation and raw SpO2 levels during the first 24h after 

birth, and their 95% CIs, are shown in Figure 5-2, Figure 5-3 and Figure 5-4, 

stratified by IVH and non-IVH groups. During the first 4h after birth, SpO2 

decorrelation time trajectories were highly unstable in both groups. The non-IVH 

group exhibited a stable trajectory 7h after birth. In contrast, the IVH group showed 

 Univariate Association Multivariable 

 Adjusted Results Unadjusted Results Adjusted Results Unadjusted Results 

Risk Factor aOR (95% CI) p-value OR (95% CI) p-value aOR (95% CI) p-value OR (95% CI) p-value 

SpO2 Decorrelation Time 1.81 (1.31-2.51) 0.0004 1.80 (1.31-2.46) 0.0003 1.58 (1.10-2.25) 0.0124 1.52 (1.07-2.16) 0.0186 

SBP, MAD of ∆x (0h-12h) 0.46 (0.28-0.74) 0.0013 0.49 (0.32-0.75) 0.0011 0.68 (0.39-1.20) 0.1873 0.76 (0.47-1.21) 0.2448 

SBP, Median of ∆x (0h-6h) 0.68 (0.55-0.85) 0.0008 0.70 (0.58-0.86) 0.0004 0.85 (0.67-1.08) 0.1741 0.84 (0.68-1.05) 0.1220 
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significantly longer decorrelation times than the non-IVH group, indicating that the 

first SpO2 decorrelation time was sustained for an increased duration in the IVH 

group. Additionally, SpO2 decorrelation time in the non-IVH group was significantly 

lower than those in the IVH group after the 7-hour mark. However, the raw SpO2 

trends were not clearly different between the two groups, with most SpO2 values 

remaining >95%. 

For a more detailed analysis of the fluctuations related to IVH, we visualized 

the autocorrelation values for each differential order and highlighted the variations 

across the time lags using density plots (Figure 5-4). In SpO2 autocorrelation, which 

reflects persistent instability in oxygen saturation, the density of autocorrelation 

values in the non-IVH group spread toward lower values after birth. However, the 

IVH group maintained consistently high values (Figure 5-4 A and B). For the first- 

and second-order differentials, which show instability in the rate of SpO2 changes, 

the IVH group showed sustained instability in SpO2 change rates, consistent with 

autocorrelation spanning 2–4 min (20%–40%). (Figure 5-4 C and D). Conversely, in 

the non-IVH group, the autocorrelation values decayed to zero 6 h post-birth (Figure 

5-4 E and F). Additionally, based on the density plots, infants in the non-IVH group 

appeared to recover faster from SpO2 changes and stabilized within a few minutes. 

In contrast, infants in the IVH group showed longer oxygen instability that persisted 

for >5 min (Figure 5-2 A and B). 
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Figure 5-2. Trend and instability density in SpO2 decorrelation time. (A) Line 

plot of SpO2 decorrelation time over the first 24 h after birth in the IVH and 

non-IVH groups. The shaded area shows 95% CI of the SpO2 decorrelation 

time. (B) Line plot of raw SpO2 over the first 24 h after birth in the IVH and 

non-IVH groups. The shaded area represents the 95% CI of SpO2. (C) Density 

plot of autocorrelation by time lag in the IVH and non-IVH groups. The x-axis 

represents the elapsed hours after birth, the y-axis represents the time lag, and 

the color intensity indicates the projections of autocorrelation values by time 

lag. 
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Figure 5-3. Trend and density plot of SpO2 decorrelation time across groups in 

the First 24 hours after birth. 
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Figure 5-4. Trend and density plot of SpO2 decorrelation time in each order 

differential. (A) Line plot of SpO2 decorrelation time over the first 24 h after 

birth in the IVH and non-IVH groups. (B) Density plot of autocorrelation by 

time lag in the IVH and non-IVH groups. (C) Line plot of first-order 

differential SpO2 decorrelation time over the first 24 h after birth in the IVH 

and non-IVH groups. (D) Density plot of first-order differential SpO2 

autocorrelation by time lag in the IVH and non-IVH groups. (E) Line plot of 

second-order differential SpO2 decorrelation time over the first 24 h after 

birth in the IVH and non-IVH groups. (F) Density plot of second-order 

differential SpO2 autocorrelation by time lag in the IVH and non-IVH groups. 
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Figure 5-5. Autocorrelation density plot of SpO2 decorrelation time at 18 

hours post-birth. (A) Density plot of autocorrelation in the IVH and non-IVH 

groups. (B) Density plot of autocorrelation by time lag in the IVH with Grade 

I, II, III and IV groups. 
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5.3.4. Sensitivity Analyses 

The results of the sensitivity analysis of the minimum sampling rate were obtained 

by undersampling each epoch (Figure 5-6). SpO2 decorrelation time in the 1-minute 

sampling period (1/60 Hz) was similar to that of the primary analysis. However, no 

significant differences were observed between the two groups for sampling periods 

longer than 5min sampling period. The results of the sensitivity analyses using the 

modified case-control definition to examine potential bias due to matching 

methods or IVH grade were consistent with those of the primary analysis (Table 

5-3. Ratios of risk factors for each ). The results of the regression model sensitivity 

analyses, to examine the possible bias due to the regression model, were consistent 

with those of the primary analysis (Table 5-4). 

 

 

Figure 5-6. Forest plot of SpO2 decorrelation time for each sampling period. 
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Table 5-3. Ratios of risk factors for each group. 

 Univariate Multivariate 

 Unadjusted Results Adjusted Results Unadjusted Results Adjusted Result 

Risk Factor OR (95% CI) p-value aOR (95% CI) p-value OR (95% CI) p-value aOR (95% CI) p-value 

Matched IVH (Any Grade)/Non-IVH        

SpO2 Decorrelation 1.47 (1.25-1.73) <0.0001 1.41 (1.19-1.69) 0.0001 1.42 (1.20-1.68) <0.0001 1.38 (1.15-1.65) 0.0004 

SBP, MAD of ∆x (0h-12h) 0.83 (0.68-1.01) 0.0569 0.87 (0.72-1.05) 0.1567 0.97 (0.78-1.19) 0.7595 0.97 (0.79-1.20) 0.8127 

SBP, Median of ∆x (0h-6h) 0.89 (0.81-0.97) 0.0106 0.91 (0.83-0.99) 0.0302 0.93 (0.84-1.03) 0.1714 0.97 (0.83-1.14) 0.1835 

Matched IVH/Control (Non-IVH+GMH)        

SpO2 Decorrelation 1.80 (1.34-2.41 0.0001 1.79 (1.32-2.43) 0.0002 1.51 (1.10-2.08) 0.0113 1.55 (1.12-2.15) 0.0082 

SBP, MAD of ∆x (0h-12h) 0.50 (0.33-0.73) 0.0004 0.49 (0.33-0.75) 0.0008 0.80 (0.52-1.24) 0.3215 0.75 (0.46-1.23) 0.2579 

SBP, Median of ∆x (0h-6h) 0.68 (0.56-0.83) 0.0001 0.67 (0.54-0.83) 0.0003 0.81 (0.65-1.00) 0.0549 0.86 (0.62-1.20) 0.0803 

Unmatched IVH/Control         

SpO2 Decorrelation Time 2.40 (1.80-3.18) <0.0001 2.09 (1.53-2.86) <0.0001 2.05 (1.51-2.79) <0.0001 1.93 (1.39-2.66) 0.0001 

SBP, MAD of ∆x (0h-12h) 0.35 (0.23-0.54) <0.0001 0.50 (0.33-0.77) 0.0013 0.55 (0.32-0.94) 0.0285 0.65 (0.39-1.10) 0.1104 

SBP, Median of ∆x (0h-6h) 0.58 (0.47-0.73) <0.0001 0.71 (0.58-0.87) 0.0011 0.84 (0.67-1.05) 0.1228 0.87 (0.70-1.08) 0.2219 

Unmatched IVH (Any Grade)/Control        

SpO2 Decorrelation Time 1.52 (1.30-1.78) <0.0001 1.41 (1.19-1.67) 0.0001 1.48 (1.26-1.74) <0.0001 1.38 (1.16-1.64) 0.0003 

SBP, MAD of ∆x (0h-12h) 0.79 (0.65-0.96) 0.0185 0.87 (0.72-1.04) 0.1299 0.92 (0.74-1.14) 0.4313 0.95 (0.77-1.17) 0.6136 

SBP, Median of ∆x (0h-6h) 0.89 (0.81-0.97) 0.0082 0.92 (0.84-0.99) 0.0455 0.95 (0.86-1.05) 0.3005 0.95 (0.86-1.05) 0.3250 

Unmatched IVH/Control (Non-IVH+GMH)        

SpO2 Decorrelation Time 2.31 (1.75-3.05) <0.0001 1.97 (1.45-2.67) <0.0001 1.95 (1.45-2.62) <0.0001 1.81 (1.33-2.48) 0.0002 

SBP, MAD of ∆x (0h-12h) 0.36 (0.24-0.55) <0.0001 0.52 (0.34-0.78) 0.0014 0.62 (0.37-1.02) 0.0621 0.71 (0.44-1.16) 0.1744 

SBP, Median of ∆x (0h-6h) 0.58 (0.46-0.72) <0.0001 0.71 (0.58-0.87) 0.0009 0.82 (0.65-1.03) 0.0830 0.85 (0.69-1.05) 0.1287 

Abbreviations: aOR, adjusted odd ratio; MAD, median absolute deviation; SBP, systolic blood pressure. 

 

Table 5-4. Odds ratios of risk factors for various regression models. 

 LR  LASSO  GLM  

Risk Factor aOR (95%CI) p-value aOR (95%CI) p-value aOR (95%CI) p-value 

SpO2 fluctuation 1.58 (1.10-2.25) 0.0124 1.57 (1.11-2.21) 0.0109 1.09 (1.03-1.15) 0.0020 

SBP, MAD of ∆x (0h-12h) 0.68 (0.39-1.20) 0.1873 0.68 (0.39-1.21) 0.1892 0.94 (0.89-1.00) 0.0522 

SBP, Median of ∆x (0h-6h) 0.85 (0.67-1.08) 0.1741 0.85 (0.67-1.08) 0.1715 0.98 (0.96-1.01) 0.1936 

Abbreviations: aOR, adjusted odd ratio; MAD, median absolute deviation; MBP, mean blood pressure; SBP, systolic blood pressure; LR, logistic regression; LASSO, 

least absolute shrinkage and selection operator; GLM, generalized linear model. 

 

 

5.4. Discussion 

 

In this study, preterm infants who developed IVH exhibited significantly greater 

oxygen saturation variability and prolonged periods of instability, as quantified by 

SpO2 decorrelation time, during the first 24 hours of life compared with infants 

without IVH. 

Decorrelation time, a metric widely used in non-medical domains to quantify 

regional persistence or variations in decay time, gives unique advantages for 

analyzing time-series data [158-163]. Previous studies showed that decorrelation 



91 

 

time is affected by fluctuations or variations with amplitudes exceeding those of 

white noise. Specifically, slower decay rates and sustained oscillatory variations are 

linked to prolonged decorrelation times. Notably, the decorrelation time obtained 

from biosignals with varying amplitudes and heterogeneous patterns within the same 

observation window is useful for inferring delayed autoregulatory responses in 

specific signal components. Theoretically, under the weak stationary assumption, 

contributing white noise to decorrelation time converges to zero, making it a robust 

metric of physiological variability. Therefore, only SpO2 met these conditions and 

was seen as a reliable risk factor for IVH. Considering these attributes, decorrelation 

time was hypothesized to provide a reliable indicator of recovery time and 

autoregulatory function in neonates, offering a novel tool for assessing physiological 

stability in this vulnerable population. 

Mean and raw continuous SpO2 levels within the first 24 hours of life were 

similar between the IVH and non-IVH groups, suggesting that oxygen saturation 

fluctuations may be subtle and not readily detectable in routine clinical assessment. 

Additionally, no significant differences were observed in respiratory support 

parameters, including FiO2, RSS, and ROX index, between the groups. These 

findings reflect intrinsic differences in respiratory physiology rather than variations 

in clinician-directed management. 

The regulation of cerebral blood flow during hypoxemia involves multiple 

integrated mechanisms that promote vasodilation. These include direct action on 

vascular smooth muscle, endothelium-mediated pathways, and the release of 

signaling molecules such as adenosine and potassium ions from neurons and glial 

cells. Furthermore, the hypoperfusion-reperfusion cycle that can result from such 

vascular changes is a key factor in the pathogenesis of IVH in preterm infants [37, 

164-169]. 
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Given that minor SpO2 fluctuations can correspond to major PaO2 changes in 

preterm infants, persistent instability may trigger damaging cerebral hypoperfusion-

reperfusion cycles in the vulnerable germinal matrix [37, 150]. In this study, we 

observed a critical divergence in SpO2 patterns between infants who did and did not 

develop IVH, occurring after the initial phase of postnatal adaptation [170, 171]. 

While both groups had unstable SpO2 during the first four hours, infants in the non-

IVH group achieved stability by seven hours. In contrast, infants who developed IVH 

demonstrated sustained fluctuations and a longer recovery from hypoxic episodes. 

This suggests that the inability to stabilize SpO2 after the first six hours of life, rather 

than early fluctuation itself, may be a key early marker of impaired cerebral 

autoregulation and heightened IVH risk. 

Previous studies have identified key risk factors for IVH, leading to established 

prevention and management strategies. Perinatal interventions primarily involve 

preventing premature birth, optimizing labor and delivery (e.g., antenatal 

glucocorticoids, delayed cord clamping, thermal stability), and providing high-

quality respiratory care [172-175]. Postnatal efforts aim to stabilize cerebral blood 

flow through nursing bundles, slow blood draws, correction of hemodynamic and 

coagulation abnormalities, and pharmacological therapies such as phenobarbital and 

indomethacin [175-177]. However, persistent challenges in effectively stabilizing 

cerebral blood flow hinder further reductions in IVH occurrence. 

While studies have attempted to predict IVH occurrence, a clinically applicable 

model has yet to be developed [155, 169, 178-180]. A key impediment is the inability 

to confirm IVH onset in real time. Standard bedside cranial ultrasound, being a 

manually conducted procedure, complicates accurate temporal diagnosis. However, 

given that most IVH cases manifest within 72 hours of birth, with approximately 50% 

emerging within the first 24 hours, hemodynamic fluctuations during this initial 24-
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hour window may be closely linked to its development [154, 180-182]. 

Recent research has explored early markers for IVH in extremely preterm 

infants. Iyer, et al. [155] quantitatively assessed electroencephalography (EEG) 

during the first 72 hours of life in 25 infants, identifying sharper and less symmetric 

EEG burst shapes as early indicators of IVH. Cimatti, et al. [169] investigated 

changes in cerebral oxygenation (CrSO2), cerebral fractional oxygen extraction 

(cFTOE), and the tissue oxygenation-heart rate reactivity index (TOHRx) preceding 

and following IVH occurrence within the same 72-hour postnatal period. In infants 

who developed IVH, CrSO2 demonstrated an initial increase followed by a plateau, 

while cFTOE decreased before subsequently rising, with peak changes occurring 

between 24 and 48 hours. Conversely, these indicators remained stable in infants 

without IVH, underscoring the role of impaired cerebral autoregulation in IVH 

pathogenesis. These novel bedside measures exhibit high diagnostic accuracy, 

potentially enabling IVH detection prior to ultrasound confirmation, thus offering 

opportunities for earlier intervention and personalized care. This study similarly 

investigates differences between groups using real-time neonatal monitoring data. 

However, current real-time monitoring methods like EEG and near-infrared 

spectroscopy (NIRS) have limitations. EEG requires specialized equipment and 

expertise for interpretation and is prone to artifacts. NIRS, while more accessible 

than EEG, is susceptible to detection errors from external light, skin thickness, and 

movement artifacts. Furthermore, signal fluctuations and inherent variability in 

infant cerebral oxygenation hinder the establishment of universal predictive 

thresholds for IVH. Consequently, these methods face limitations compared to more 

accessible and widely used SpO2 monitoring. 

To enable precise monitoring of subtle vital sign changes, we utilized real-time 

vital sign data, recorded every 30 seconds, from the first 24 hours of life. Our 
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comprehensive analysis, employing descriptive statistics, time series analysis, time-

frequency domain analysis, and autocorrelation methods, revealed that differences in 

SpO2 decorrelation times were detectable at shorter intervals (1–5 minutes). These 

differences were indistinguishable with data recorded at intervals of <15 minutes, 

underscoring the limitation of traditional medical records that rely on longer 

measurement intervals for identifying subtle, clinically significant variations. 

A primary strength of this study lies in its capacity to detect subtle, clinically 

imperceptible variations in SpO2 through real-time vital sign monitoring at 30-

second intervals, even when raw SpO2 values consistently remain above 95%. Our 

analysis of these real-time physiological indicators offers a novel method for 

determining the probability of IVH occurrence, thereby facilitating bedside clinical 

decision-making and enabling more precise respiratory and cardiovascular 

management of preterm infants in the NICUs. 

Our study was limited by its retrospective design. First, we could not include 

direct measures of cerebral perfusion/oxygenation (e.g., NIRS) or comprehensive 

cardiac function via echocardiography. We also lacked real-time values for invasive 

blood gas parameters, which are known to significantly influence cerebral blood flow. 

However, we demonstrated that the frequency and mean values of blood gas analyses 

did not differ between the IVH and non-IVH groups during the first 24 hours of life. 

Future research should address these gaps by incorporating non-invasive real-time 

monitoring methods, such as transcutaneous CO2 monitoring and NIRS. 

※ This chapter will be submitted to a peer-reviewed journal for publication.  
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Chapter 6. Conclusion 
 

This study introduces an efficient and scalable methodology and framework for the 

extraction and selection of features from continuous vital signs, an area holding 

substantial recent promise. This methodology was specifically designed to address 

the unique characteristics of vulnerable preterm infants and their continuous vital 

signs in the NICU. Furthermore, we investigated clinically relevant risk factors and 

developed a predictive model, thereby substantiating the feasibility and applicability 

of continuous vital signs through external validation. 

Our methodology features a flexible pipeline, enabling easy integration of 

diverse feature calculation methods and direct analysis of their clinical significance. 

We further applied case-control emulation and FDR control method using 

established clinical statistical tests and estimators. This approach mitigates false 

positives from multiple comparisons, ensuring reliable results. Notably, the process 

was designed to be partitionable, enhancing scalability. 

To validate our methodology, we implemented the framework utilizing a 

distributed computing architecture based on the MapReduce model's divide-and-

conquer concept. This implementation was feasible due to the unidirectional design 

of our analysis methods and their reliance on separate resample or subsample-based 

analysis, maintaining reliability during computation. Although our current 

implementation operated on a single server and used a basic MapReduce model, it 

has the potential for future extension to include real-time analysis capabilities 

through features like in-memory databases or optimized NoSQL-based aggregation, 

which will be explored in future research. We anticipate that this validated and robust 

methodology can be expanded to integrate data from various institutions or by 

incorporating additional deep learning nodes. 
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The features derived from our proposed methods exhibited distinct 

characteristics for each morbidity. In sepsis and all-cause mortality study, we 

observed a negative correlation between sepsis and heart rate entropy, consistent 

with previous HRC research. This implied that heart rate variability and entropy, 

often collectable from patient monitor at 0.5–1 Hz in most NICUs, can achieve 

similar performance to ECG-based systems like the HeRO score. The inclusion of 

pulse oximeter entropy with similar or identical contributions to heart rate features 

suggests a promising for detecting infection and deterioration in patients for whom 

ECG measurement is challenging, or for discharged neonates in home care settings, 

given the ease of use of pulse oximeters. In extubation readiness, while previous 

extubation readiness predictive models showed valid performance even across 

different internal validation timeframes, we identified that integrating continuous 

vital signs significantly enhances the accuracy of patient status assessment. In IVH 

study, our methodology successfully identified SpO2 instability, derived using the 

decorrelation time method from outside the traditional medical domain, as a novel 

physiological marker for IVH onset detection. We expect that this newly identified 

physiological marker could enable proactive interventions before severe IVH 

develops, thereby improving patient outcomes. 

This study has limitations across technical, statistical, and clinical domains, 

which inform areas for future research. 

From a technical perspective, the limitations are as follows. Firstly, the 

MapReduce model utilized in this study does not represent the current state-of-the-

art methodology. Consequently, the implemented framework may exhibit 

significantly slower processing performance and higher latency compared to 

contemporary approaches, such as those employing in-memory databases. However, 

since the algorithms and methods proposed in this study are fundamentally 
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compatible with distributed computing, they can be readily adapted to more 

advanced database technologies or those supporting efficient aggregation. Therefore, 

future research should investigate which database and architectural configurations 

are most efficient for identifying key risk factors and features across various database 

systems. 

Secondly, our proposed framework presents security vulnerabilities. Due to 

scalability concerns with CouchDB's default JavaScript-based query server, this 

study developed a custom Python-based query server. However, systems that execute 

scripts, such as Python, are susceptible to exploits from external intrusions. This 

inherent risk has led to a recent trend where external script-supporting query servers 

are only offered with limited functionality. Accordingly, enhancing the security of 

data transmission and the query server itself is crucial for the practical application of 

this framework. 

Thirdly, this study did not implement specific load balancing or data 

redistribution mechanisms. A bottleneck in a single server can consequently extend 

the overall execution time. Therefore, any real-world application of this framework 

would necessitate incorporating strategies such as task replication and data 

redundancy to ensure robust performance. 

Finally, the reported performance metrics were derived from a Kubernetes 

cluster simulated using Kind. As such, these simulations do not account for network 

latency or bandwidth, nor do they involve physically distinct servers. Consequently, 

the actual performance when deploying the framework across multiple physically 

separate nodes may differ considerably. Therefore, future research should further 

evaluate the impact of network considerations on performance. 

From a statistical perspective, the limitations are as follows. First, further 

research is required to determine the optimal number of resampling iterations and an 
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appropriate cutoff value. This study applied a minimum of 200 resampling iterations; 

additional analysis is needed to assess the extent to which a greater number of 

iterations or resampling improves statistical power and FDR mitigation. 

Second, the estimators used in this study do not reflect modern approaches. 

Recent research, for example, has explored applying deep learning-based estimators, 

such as the X-model or knockoff filter. Consequently, this study did not investigate 

the specific characteristics or performance implications associated with different 

types of estimators. Therefore, further research is needed to investigate the 

characteristics of each estimator. 

The clinical limitations are as follows. First, data scarcity for external validation 

posed a significant challenge. Our analyses exclusively utilized the UVA NICU 

dataset for external validation. This dataset's focus on all-cause mortality also 

restricted our capacity to conduct direct, event-specific performance comparisons. 

These constraints stem from the general scarcity of continuous vital sign databases 

for NICU preterm infants, coupled with a lack of linked demographic or diagnosis 

data in existing repositories. 

Second, the limited subject numbers within specific event cohorts restricted the 

study scope. The count of preterm infants included in certain event analyses was 

notably restricted. For instance, the IVH cohort comprised only 29 infants. 

Consequently, further research is crucial to ascertain the external validity of the 

identified predictors across diverse institutional settings.  

This study overcomes limitations of computational burden and restricted time 

series analysis in conventional clinical research. By advancing continuous vital sign 

research and its clinical utility, our work aims to improve research efficiency and 

address clinical needs. 
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Abstract in Korean 

신생아 중환자실에 입원하는 저체중 미숙아는 높은 사망률과 이환율을 

보이는 고위험 환자군에 속한다. 이러한 저체중 미숙아는 지속적인 

모니터링과 높은 수준의 임상적 중재를 필요로 한다. 특히 미숙아의 

생존율과 장기적인 예후를 개선하기 위해서는 조기 진단 및 예후 예측이 

필수적이다. 이러한 요구를 만족하고 적합한 시점의 임상 결정과 중재를 

지원하기 위해 최근 연속 활력징후 데이터를 기반의 임상 지표 식별 

연구와 예측 모델 연구가 활발하게 진행되고 있다.  

그러나 신생아 중환자실 환자군에 대한 머신러닝, 딥러닝 모델이 

로지스틱 회귀 모델에 비해서 유의미한 우월성을 입증하지 못하고 

있으며, 외부 검증 시에도 낮은 성능을 보이고 있다. 이러한 한계점은 

다음과 같은 문제로 인해 발생되는 것으로 보고 되고 있다. 첫번째, 

생체신호 수집 및 처리 방식의 연구 및 기관별 차이로 인해 예측 모델의 

일반화 가능성을 어렵게 하고 있다. 둘째, 미숙아의 재태 주수 및 임상 

현장에서 발생되는 중재의 빈도가 기관 및 의료진 별로 상당한 이질성이 

안정적인 지표 추출을 난해하게 만드는 것으로 알려지고 있다. 이와 

더불어 연속적 활력징후를 활용하는 저체중 미숙아 연구는 높은 연산 

부담과 시계열 분석 방법의 제한적 적용이라는 한계에 직면하여 

어려움을 겪고 있다.  

    본 연구는 기존 저체중 미숙아 환자군의 특성으로 인한 분석의 

어려움과 함께 분석 연산 자원 부담 및 시계열 분석 방법의 제한적인 

적용이라는 문제, 그리고 기존의 연구 한계점 해결하기 위해 확장 

가능한 연속 활력징후 분석 방법론을 제안하고자 한다. 이 방법론은 
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다양한 연구 영역의 시계열 분석 기법을 효율적으로 적용하여, 

지속적으로 수집되는 대규모 활력징후 데이터로부터 임상적으로 연관성 

있는 진단 및 예후 지표를 식별하고 새로운 생리적 요인을 심층적으로 

탐색하도록 설계되었다. 

    특히, 이전에 발견되지 않은 새로운 연속 활력징후 기반 지표를 

추출하기 위해 확장 가능한 특징 추출 접근 방식을 개발하여 방법론에 

적용하였다. 전자의무기록 기반 데이터에서 식별하기 어려웠던 

신생아중환자실 특유의 생리적 패턴을 반영하는 동적 특징을 도출하고자 

시계열 분석 기법을 특징 추출에 통합했다. 또한, 최신 위양성발견율 

제어 방법론과 임상 시험 에뮬레이션 방법을 분할 가능한 알고리즘으로 

변환함으로써, 임상 지표 식별의 높은 확장성과 견고성을 동시에 

향상시켰다. 이러한 알고리즘은 병렬 및 분산 컴퓨팅 기술 활용을 

가능하게 하여, 고성능 컴퓨팅의 현재 추세에 발맞춰 대규모 다기관 

임상 연구의 계산 효율성과 전반적인 확장성을 크게 높였다. 

    본 연구에서 제안한 방법론을 검증하기 위해 다음과 같은 연구를 

수행하였다. 연구에서 제안한 위양성발견율이 기존의 방법론에 비해 더 

높은 위양성발견율 제어와 연산 효율을 가지는지 확인하기 위해 

시뮬레이션 분석을 통해 확인하였다. 기존의 저체중 미숙아의 주요 

합병증인 패혈증과 사망 예측모델을 연구에서 제안하는 방법론을 

기반으로 생성, 예측모델로 개발하였으며 외부 검증 데이터셋에서도 

견고한 분류 성능을 보여주는 것을 확인하였다. 연속 활력징후 기반 

예측 모델을 본 연구의 방법론을 기반으로 개발하여 기존의 의료진의 

의사 결정에 기여를 할 수 있음을 확인하였다. 마지막으로 타 연구 
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영역의 시계열 분석 방법론을 활용하여 뇌실내출혈의 식별을 위한 

새로운 지표를 본 방법론을 기반으로 식별함으로써 본 연구의 방법론이 

새로운 임상 지표를 찾을 데 유용함을 확인할 수 있었다. 

    본 연구의 기여는 다음과 같다. (1) 연속 활력징후 데이터로부터 

고해상도 임상 지표를 체계적으로 도출하여 저체중 미숙아의 위험 인자 

식별 및 예측에 사용되는 특성 계산 방법론의 범위와 정밀도를 

확장하였다. (2) 저체중 미숙아의 생리적 특성을 반영하는 시계열 분석 

프레임워크를 개발하여 기존 저체중 미숙아 생체신호 분석 방법론의 

한계를 완화하였다. (3) 본 연구에서 제안하는 방법론 기반으로 개발된 

모델을 외부 검증함으로써 신생아 중환자실 내 예측모델의 신뢰성과 

재현성을 향상하였다. (4) 새로운 생리적 지표에 대한 심층 분석을 통해 

생리적 특성과 자율 신경계 기능 손상과 같은 중요한 임상 현상을 

연결함으로써 모델의 해석 가능성과 임상적 유용성을 개선하고자 하였다. 

본 연구는 기존 연구의 연산 및 분석적 한계를 완화하였으며, 연속적 

활력 징후 연구의 실질적인 적용 가능성을 높여 연구 편의성 증진 및 

임상적 문제 해결에 기여할 것으로 기대한다. 나아가 향후 저체중 

미숙아의 예후 평가를 개선하고, 신생아 중환자실 환경에서 신뢰 

가능하고 임상적으로 적용가능한 인공지능 모델 개발에 기여할 것으로 

기대한다. 

 

주제어: 미숙아, 연속 활력징후, FDR 제어, 시계열 분석, 고차원 데이터, 
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