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Abstract

Low birth weight preterm infants admitted to neonatal intensive care units (NICUs)
represent a high-risk group with high mortality and morbidity rates. These preterm
infants require continuous physiological monitoring and intensive clinical
intervention. Early diagnosis and prognosis prediction are critical for improving
survival and long-term outcomes in preterm infants. To address this need and support
timely clinical decisions, recent research has extensively focused on developing
predictive models and identifying clinical indicators from continuous vital sign data.

However, machine learning and deep learning models applied to NICU preterm
infant data frequently fail to demonstrate statistically significant superiority over
logistic regression models, often exhibiting suboptimal performance during external
validation. These limitations result from several challenges. First, institutional and
research-specific variations in physiological signal acquisition and processing
methodologies impede the generalizability of predictive models. Second,
considerable heterogeneity in gestational age and the frequency of clinical
interventions across institutions and care providers complicates the extraction of
stable, reliable indicators. Furthermore, studies using continuous vital signs data in
preterm infants are limited by considerable constraints due to high computational
burdens and the restricted applicability of time series analysis methods.

This study proposed a scalable methodology for continuous vital sign analysis
to address analytical complexities resulting from preterm infant characteristics,
computational resource demands, constraints in time series analysis application, and
existing research limitations. Our methodology efficiently integrated diverse time
series analysis methods from various research domains. This enables the
identification of clinically relevant diagnostic and prognostic factors from

continuously acquired large-scale vital sign data and supports in-depth exploration
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of novel physiological factors. We developed a scalable feature extraction approach
to derive previously uncharacterized continuous vital sign-based features, applying
time series analysis methods to capture dynamic features reflective of NICU-specific
physiological patterns often challenging to extract from electronic medical record
(EMR) data. Additionally, by transforming advanced false discovery rate (FDR)
control and clinical trial emulation methods into partitionable algorithms, the
proposed methods improved both the scalability and robustness of identified clinical
indicators. These methods, by enabling parallel and distributed computing,
substantially enhance computational efficiency and overall scalability for large-scale
multicenter clinical studies, aligning with current high-performance computing
paradigms.

To validate the proposed methodology, we conducted several studies using the
methods that were implemented by the framework. We initially performed
simulation analyses to determine that our proposed FDR control method provides
superior control and computational efficiency compared to traditional methodologies.
Subsequently, we developed predictive models for sepsis and mortality, critical
complications in preterm infants, based on the proposed framework. These models
demonstrated robust classification performance even in external validation datasets.
We further validated that continuous physiological signal-based predictive models,
developed using the proposed framework, can contribute to clinical decision-making.
Lastly, by identifying the novel predictor for intraventricular hemorrhage (IVH) via
time series analysis methods from other research domains, we demonstrated the
capacity of the proposed methodology to discover new clinical indicators.

This study provides several notable contributions. We systematically derived
high-resolution clinical indicators from continuous vital sign data, thereby

expanding the scope and precision of feature extraction and selection methodologies
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for risk factor identification and prediction in preterm infants. We also developed a
time series analysis framework that accurately reflects the physiological
characteristics of preterm infants, consequently mitigating limitations inherent in
existing continuous vital sign analysis methodologies for this population.
Furthermore, through external validation of models developed using our proposed
methodology, we enhanced the reliability and reproducibility of predictive models
within the NICU. Finally, via in-depth analysis of novel physiological predictors, we
aimed to enhance model interpretability and clinical utility by establishing links
between physiological characteristics and significant clinical symptoms, such as
autonomic nervous system dysfunction. Overall, this study addresses existing
computational and analytical constraints, thereby improving the practical
applicability of continuous vital signs analysis research. We anticipate our
methodology will support enhanced research convenience and facilitate the
resolution of critical clinical questions. Moreover, it is expected to advance
prognostic assessment in preterm infants and contribute to the development of
dependable and clinically actionable artificial intelligence models within the NICU

environment.
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Chapter 1. Introduction

1.1. Clinical Background: Low Birth Weight
Preterm Infants in a Neonatal Intensive Care

Unit

1.1.1. Preterm and Low Birth Weight Infants

Preterm birth, defined as delivery before 37 weeks of gestation age (GA), remains a
major global health challenge and a leading cause of neonatal morbidity and
mortality [1]. Infants born preterm are physiologically immature and clinically
vulnerable, with a heightened risk of developing life-threatening complications due
to underdeveloped organ systems.

Preterm infants require substantial medical support to survive in the
extrauterine environment due to the immaturity of multiple organ systems, including
the lungs, brain, cardiovascular system, and gastrointestinal tract. In utero, fetal
organs undergo progressive maturation to achieve functional competence necessary
for extrauterine life. In term neonates, this maturation typically enables spontaneous
respiration, effective pulmonary gas exchange, metabolic homeostasis, autonomic
regulation of cardiovascular function, neurologic responsiveness to sensory stimuli,
coordinated gastrointestinal motility with enzymatic activity, and the presence of
primitive reflexes such as sucking, grasping, and rooting [1, 2].

Preterm infants with a higher degree of immaturity are associated with
physiological vulnerability, leading to a steep increase in the risk of both mortality

and short- and long-term morbidity. Therefore, delivery decisions and treatment
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strategies, including initiation of active neonatal treatment, or timing and intensity
of interventions, must be guided by the infant’s level of maturity, underscoring the
need for validated clinical indices and objective measures to assess maturity.

GA has been the most used indicator and serves as a practical proxy measure
for developmental maturity. Preterm infants were defined as belonging to one of
three gestational age categories: extremely preterm (less than 28 weeks), very
preterm (28 to 31 weeks), and moderately preterm (32 to 36 weeks) [1, 3]. These
classifications are associated with clinical outcomes, as survival rates and the
incidence of complications [3]. However, GA based classifications alone do not fully
capture the spectrum of neonatal immaturity. Specifically, GA does not determine
for infants who are born too early versus those who are small for gestational age
(SGA), nor does it address cases of functional immaturity in full-term infants. For
this reason, additional proxy measures are required to complement GA when

evaluating neonatal maturity.

1.1.2. Mortality and Complications of Preterm Infants in

NICU

Recent advances in medical technology and ongoing research have led to significant
progress in perinatal and neonatal intensive care, resulting in substantial
improvements in overall survival rates [4-6]. Nevertheless, even at present, low birth
weight preterm infants have higher risks of morbidity and mortality compared to
term infants. Globally, the incidence of preterm birth has remained relatively stable
(9.8% in 2010 and 9.9% in 2020). As of 2019, mortality related to preterm birth
complications accounted for 17.7% of all neonatal deaths worldwide [7, 8].
Compared with outborn pre-term infants, those admitted to NICUs generally

have significantly higher survival rates. Consequently, the spectrum and causes of
2



death differ substantially between the overall population of preterm infants and those
who receive intensive care. In addition, there is considerable variation in neonatal
outcomes depending on country, institutional NICU level, available medical
resources, and the quality of perinatal and neonatal care. These disparities are further
compounded by differences in clinical definitions, diagnostic thresholds, and
reporting standards for neonatal complications and causes of death.

The primary complications and causes of death for preterm infants in the NICU
vary slightly by region and institution. However, respiratory failure, infection, and
neurological injury are consistently identified complications.

In the United States, a study of extremely preterm infants admitted to NICUs
between 2013 and 2018 reported an approximate 20% incidence of late-onset sepsis
(LONS) in infants born at 22-28 weeks' gestational age. During the same period,
bronchopulmonary dysplasia (BPD) occurred in 8.0%, intracranial hemorrhage in
14.3%, and neurodevelopmental impairments affected 29.3% (moderate) and 21.2%
(severe) of these infants. While survival rates significantly increased compared to
the 2008-2012 period, the incidence of neurodevelopmental impairments remained
unchanged [9].

Due to the heterogeneity in NICUs, clinical practice, and data classification
systems, it remains difficult to establish universally accepted definitions for major
complications of prematurity. For instance, diagnostic criteria for conditions such as
intraventricular hemorrhage (IVH), BPD, necrotizing enterocolitis (NEC), and
sepsis may vary across institutions and countries in terms of imaging modality,
timing of diagnosis, and clinical thresholds for intervention. Moreover, differences
in gestational age thresholds for viability and in the ethical framework guiding
resuscitation and intensive care practices influence the clinical course and reported

outcomes. As a result, international comparisons of morbidity and mortality data are
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often limited by inconsistency in terminology and methodology.

This variability significantly impacts the ability to generate standardized
epidemiologic profiles of preterm complications, hindering efforts to implement
globally harmonized quality improvement initiatives and evidence-based policy
recommendations. Therefore, the interpretation of both short- and long-term
outcomes in NICU-admitted preterm infants must be contextualized within the
specific healthcare environment, gestational age distribution, and national clinical

guidelines.

1.1.3. Early Detection in the NICU: Importance and

Challenges

Early detection and timely intervention during clinical deterioration can significantly
improve the prognosis and survival rates of preterm infants. There is growing
evidence and research supporting that early diagnosis and detection of patient
deterioration in the NICU can prevent severe complications and improve clinical
outcomes, ultimately leading to further improvements in preterm infant survival rates.

One of the primary subjects of research focused on early detection is late-onset
sepsis. Sepsis is a complication that arises from infection and remains one of the
most severe complications. Despite advances in neonatal care, sepsis remains a
leading contributor to morbidity and mortality in NICUs. It has been reported that
approximately 20% of deaths among infants weighing less than 1,500g were
attributable to sepsis. Moreover, the risk of death is nearly threefold higher in infants
diagnosed with sepsis compared to those without infection [10]. Neonatal sepsis is
typically classified into two categories: early-onset sepsis (EOS), occurring within

the first 72 hours of life, and LONS, which presents between 72 hours and 120 days



after birth [10, 11]. EOS is primarily the result of intrauterine infection or vertical
transmission of pathogens during labor and delivery, whereas LONS may arise from
both vertical transmission and horizontal acquisition of bacteria from healthcare
personnel or the NICU environment.

EOS can be prevented in up to 80% of cases through the administration of
intrapartum antibiotic prophylaxis [12]. In contrast, no established prophylactic
strategy or standardized guidelines currently exist for early identification of LONS,
particularly in asymptomatic infants. The definitive diagnosis of LONS requires
blood culture testing; however, results typically take 48 to 72 hours. To avoid
treatment delays, empirical antibiotic therapy is often initiated before confirmation.
Even when blood cultures are negative, antibiotics are frequently continued if
clinical symptoms of LONS are present, due to the potential for false-negative
culture results. However, this approach results in antimicrobial resistance, exposing
infants to the risks associated with prolonged antibiotic use, and increases healthcare
costs. Furthermore, preterm infants have a limited blood volume available for
sampling, and blood culture is an invasive procedure with a high rate of false-

negative results.

1.2. Analytic Methods and Frameworks for Preterm

Infants in NICU

Predictive tools and analytical models have been developed to support early
recognition of clinical deterioration and to guide prognostic assessment and timely
intervention in preterm infants, beginning at the time of delivery and extending

throughout the NICU stay. These models vary in clinical objective, timing of
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assessment, and types of data utilized. A substantial number of vital signs-based
approaches rely on continuous monitoring of vital signs, most derived from
electrocardiograms (ECGs) and linked with electronic medical records (EMRs), to
detect subtle physiological changes that result from physiological instability.
However, the high computational demands and specialized equipment required for
ECG-based approaches limit their applicability across all healthcare settings.
Additionally, EMR data are often recorded at low temporal resolution and may be
influenced by clinician-driven documentation bias. In response to these limitations,
an increasing number of studies investigate the use of continuous vital sign data

obtained from patient monitoring systems as a complementary approach.

1.2.1. ECG Based Approach

The ECG is a fundamental diagnostic tool that measures the heart's electrical activity
during cardiac cycles. ECGs are recorded by processing and amplifying
depolarization and repolarization signals, derived from the differential voltage
between two points relative to a single ground reference. Standard 12-lead ECGs
measure these differential voltages from various angles around the heart.

While the typical adult QRS complex duration ranges from 60 to 100
milliseconds, the neonatal QRS complex is comparatively shorter, spanning 30 to 94
milliseconds. Consequently, some characteristics and normal ranges of neonatal
ECGs differ from those in adults. Furthermore, certain features may necessitate the
analysis of high-frequency data in preterm infant population.

Heart rate variability (HRV) is one of the most widely used analytical methods.
It quantifies the variation in RR intervals—or normal-to-normal intervals—between
QRS complexes on ECG, which reflects autonomic nervous system function and

maturation [13-15]. In particular, decreased HRV correlates with severe



inflammation and infection, and many studies have been therefore applied HRV as
an analytical method for the early identification of LONS and NEC in neonates.[16,
17] Griffin et al[18, 19] presented the heart rate characteristics (HRC) index, which
used heart rate variability and transient decelerations to identify early detection of
neonatal sepsis. Furthermore, a multicenter, prospective, randomized controlled trial
of'the HeRO monitor, which is based on HRC analysis, demonstrated an approximate
22% reduction in all-cause mortality in the patient group that received HRC index
[20]. Research consistently reports a strong association between vital sign instability
in preterm infants and various adverse outcomes, including NEC, BPD, IVH,
retinopathy of prematurity (ROP), cerebral palsy, and delayed early cognitive
development. Specifically, HRV has shown a high correlation with these morbidities.
[21-27]. However, these studies investigating the association between HRC index
and morbidities other than LONS and NEC are often limited to single-center designs
with small patient cohorts, requiring further research. Furthermore, existing ECG-
based heart rate studies, including the HeRO system, demand substantial
computational resources and often require specialized installation, hindering easy
accessibility across multiple centers. An additional consideration for the HRC index
is that its values can be influenced by external factors like surgical procedures and
interventions, not solely a specific morbidity. Therefore, further research is needed
to explore the relationship between HRC, other vital signs, and comprehensive

clinical data.

1.2.2. EMR-based Approaches

The development of medical information systems and the widespread
implementation of EMR have markedly increased the volume and accessibility of

clinical and physiological data in NICUs. Research on preterm infants in the NICU
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has often been constrained by small sample sizes and single-center designs, limiting
external validation and broader applicability. The introduction of publicly accessible
databases, such as MIMIC-III (Medical Information Mart for Intensive Care) [28],
provides structured NICU EMR data that support validation efforts and enable
multicenter analyses. As a result, research efforts utilizing these data sources have
expanded, particularly in the application of artificial intelligence (Al) to detect and
predict critical events and morbidities in preterm infants.

Consequently, many studies in this area have used EMR data due to its
availability and the practical advantage of not requiring additional equipment. EMR
data are typically available for retrospective analysis and are structured for algorithm
development. However, several limitations in using EMR data for predictive
modeling have been identified. One major limitation is the low temporal resolution
of vital signs in EMR systems. In typical clinical workflows, vital signs may be
recorded every 15 to 60 minutes, depending on institutional practices. This frequency
is insufficient to capture the minute-to-minute physiological variability that can
precede deterioration in preterm infants [29]. As a result, predictive models trained
on EMR data may fail to detect early warning signs or subtle changes that are critical
in a neonatal context [30].

Another issue is the subjectivity in EMR documentation. Data entries are often
made at the discretion of the clinician, reflecting specific moments tied to care
decisions or clinician awareness rather than continuous patient status [31, 32]. This
introduces potential bias, making the data less representative of the full clinical
picture and more influenced by provider behavior, workload, and institutional
routines. Consequently, the validity of predictive algorithms based solely on EMR
data may be limited.

Overall, while EMR-based approaches offer accessibility and convenience,
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they are inherently limited by their temporal granularity and reliance on clinician
input. Further research is needed to determine the most effective ways to leverage

both data types in building robust, clinically useful predictive tools for neonatal care.

1.2.3. Continuous Vital signs-based Approaches

Although survival rates in NICUs have improved significantly over the past several
decades, the information provided by conventional medical technologies have
reached its limitations [33]. The limitations of traditional EMR data analysis have
led to a significant increase in the perceived need for continuous vital sign analysis
research since 2020 [27]. In response, there has been increasing interest in the use of
continuous physiological data collected through bedside monitoring systems [27, 30,
34, 35]. These systems capture vital signs such as heart rate, respiratory rate, blood
pressure, and oxygen saturation at high sampling rates, often on a second-by-second
sampling period. This automated, human-independent data acquisition allows for
higher temporal resolution and improved objectivity when compared to EMR
records.

Recent studies suggested that incorporating continuous monitoring data into Al-
based prediction models can improve the accuracy and timeliness of detecting
adverse events, such as sepsis, apnea, and IVH [30, 36-38]. These findings imply a
high potential for these approaches to support earlier intervention, particularly in
high-risk neonatal populations.

Consequently, numerous studies are actively investigating features associated
with severe morbidity and mortality in preterm infants. However, their
implementation also raises new challenges. These include handling large volumes of
time-series data, filtering signal noise, ensuring interoperability between different

monitoring systems, and developing standards for integrating predictive outputs into



clinical decision-making processes. One of the most significant limitations is that
most of these studies are unable to fully utilize observation windows exceeding one
hour due to computational burden. Letzkus, et al. [39] investigated the association
between low heart rate variability and cerebral palsy, developing a multivariable
logistic regression classifier using 1 Hz heart rate from continuous vital signs.
However, due to computational burden, they calculated features by extracting
median values from 10-minute heart rate segments. Similarly, Niestroy, et al. [35]
attempted to develop a model predicting all-cause mortality using numerous features
generated from randomly extracted values within 10-minute segments for reducing
computational burden. Peng, et al. [34] also generated features from continuous vital
signs, similar to other studies, at a 0.5 Hz sampling rate. Yet, instead of utilizing
observation windows exceeding one hour, their approach involved segmenting data
into 10-minute intervals, calculating features, and then applying a grand mean.
Consequently, this implies two key concerns: the potential for missing nuanced
physiological signals embedded in continuous preterm infant vital signs, and the
resulting inter-study variability in quantified features due to inconsistent aggregation

approaches [40].

1.2.4. Feature Selection Methods for High-Dimensional

Data

Feature selection is the process of selecting a subset of relevant features that are
strongly associated with specific response variables from a high-dimensional feature
set. By selecting a subset of relevant features, feature selection generally improves
the efficiency of subsequent analyses, enhances the reproducibility of findings, and

increases interpretability by minimizing the variables requiring further analysis
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about clinical implications [41]. Consequently, this methodology is widely utilized
across various research domains, particularly in studies involving preterm infants
within the NICU [42-48]. Specially, many studies for developing predictive models
have applied a feature selection approach for several critical objectives: mitigating
model overfitting, enhancing computational efficiency, and stabilizing model
performance by filtering out noisy data[42, 43, 49-51].

Broadly, feature selection methodologies are categorized into filter, wrapper,
embedded, and hybrid methods [43]. In studies focused on clinical risk factor
identification, the criteria for selecting or identifying risk factors were often derived
from existing literature or through expert-driven clinical background. These
approaches are predominantly utilized in predictive model research to extract the
most relevant features from large datasets. In NICU research, the selection of a
specific feature selection technique is often dictated by study characteristics.
Additionally, within the clinical domain, expert-driven feature selection, which
involves identifying key clinically relevant indicators, is commonly utilized [46].
For filter methods, commonly used approaches include traditional statistical
techniques such as univariable logistic regression and statistical test-based feature
selections [52, 53]. Specifically, stepwise feature selection approach is widely used
in clinical research and practice [54, 55]. More recently, there has been an increasing
adoption of embedding methods for feature selection, which utilize feature
importance metrics derived from machine learning models [53, 55, 56].

Research in feature selection is rapidly advancing, driven by the increasing
prevalence of data characterized by ultra-high dimensionality. Specifically, the
number of false positives in feature selection procedures significantly impacts the
performance of subsequent analyses and predictive models derived from high-

dimensional data. Therefore, the ability to control these false positives has become
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crucial, leading to recent methodological advancements in False Discovery Rate
(FDR) control for feature selection methods. The FDR control method controls the
proportion of false discoveries among rejected null hypotheses (i.e., irrelevant
features related to specific response variables) to remain below a target level. For
high-dimensional data in clinical research, the Benjamini-Hochberg (BH) procedure
[57] and the Benjamini-Yekutieli (BY) procedure [58] have been widely used as
FDR control methods. One notable recent development in powerful FDR control
methodologies is the knockoff filter [59]. This method adds synthetic "knock-off"
features into the dataset, against which the FDR is then rigorously controlled.
Compared to existing FDR control methods, the Knockoff filter method is more
general and flexible, providing stable FDR control even when the proportion of null
features is high. Consequently, several Knockoff filter-based FDR control methods,
such as Model-X, have been proposed [60, 61]. However, a significant limitation of
the knock-off technique is its prerequisite for prior knowledge of the data's
underlying distribution. Applying knockoff filter methods when this distribution is
unknown carries the risk of FDR inflation [62]. Research is also underway to
efficiently compute statistics for a large number of features. Notably, recent efforts
have focused on analyzing U-statistics across distributed servers, specifically
addressing the statistical-computational trade-off [63]. Despite these advancements,
most NICU research predominantly utilizes classic stepwise selection methods.
There's a notable lack of research and feasibility studies on feature selection methods
designed to efficiently handle the large volume of features derived from continuous
vital signs.

One of the primary challenges in studies aimed at identifying risk factors for
preterm infants in the NICU is the limited number of subjects who meet the inclusion

criteria, along with the particularly small size of the case group targeted for risk
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factor analysis. This results in a highly imbalanced class distribution, which
represents a key challenge in classification-based problem formulations, as outlined
in the earlier methodology.

As previously noted, one of the primary challenges in studies aimed at
identifying risk factors for preterm infants in the NICU is the limited number of
subjects who meet the inclusion criteria, along with the particularly small. The
substantial heterogeneity in demographics, institutional measurement practices, and
external environmental factors among preterm infants in the NICU induced
significant uncertainty into the theoretical biases of continuous vital sign-based
features. Current research often attempts to identify key risk factors and predictors
by ranking features based on p-values from association analyses with specific
morbidities or mortality. Alternatively, basic feature selection techniques are applied
for "black box" models such as deep learning and machine learning. A major
limitation of these approaches is that most are single-institution studies lacking

external validation, precluding confirmation of performance robustness.

1.3. Research Questions and Aims

Previous research has established that features derived from continuous vital signs
can offer novel insights to clinicians and provide a foundation for identifying risk
factors that enable earlier detection of preterm infant deterioration with higher
sensitivity. However, current continuous vital sign processing and analysis methods
vary significantly across studies. Furthermore, the analytical techniques applied are
often limited by computational burden, restricting them to basic statistics, or they
fail to sufficiently mitigate bias that can arise from single-institution studies.

Therefore, this study proposed a methodology designed to overcome the
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limitations of existing continuous vital sign analysis and address the challenges
associated with identifying novel risk factors. The overall methodological pipeline
was structured into the following chapters.

Chapter 2 introduced a continuous vital sign analysis methodology that applies
diverse domain methods to analyze, filter, and select features strongly associated
with critical clinical events in preterm infants. This methodology uses a distributed
computing architecture from its implementation phase, ensuring scalability and
flexible adaptation for expanding datasets, new risk factors, and model integration
in future research. Conventional FDR control and emulation methods, especially
those based on traditional sequential procedures, are exceptionally time-consuming.
To address this, we proposed partitionable algorithms within our framework. This
transformation of iterative processes significantly enhances computational efficiency
and resolves prior limitations in the scalability and flexibility of feature selection and
analysis methods. By enabling parallel or distributed computing techniques, our
refined approach aligns with current high-performance computing trends, thereby
substantially boosting efficiency and overall scalability for larger, multicenter
clinical studies.

Chapter 3 focused on identifying key features associated with all-cause
mortality and late-onset sepsis, two major predictive modeling topics in NICU
preterm infants. We developed predictive models and validated them using an
external dataset to confirm the robustness of the methodologies proposed in this
study. We also investigated whether previously known key features associated with
sepsis and all-cause mortality were similarly detected, or if our approach identified
complementary or surrogate features.

Chapter 4 validated the superiority of continuous vital sign-based features over

existing EMR-based features in providing insight into patient clinical symptoms. To
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achieve this, we recalibrated a previously developed extubation readiness model for
NICU preterm infants within our study. We then confirmed the enhanced
performance of this predictive model, driven by features identified in our research,
using our proposed methods.

Chapter 5 demonstrated the ability of our proposed methodologies to identify
novel physiological markers for the timely detection of IVH, a critical morbidity in
preterm infants requiring early diagnosis and intervention. This chapter assessed the
applicability of diverse cross-domain feature calculation methods in the clinical
domain and explored how our approach overcomes limitations of traditional case-

control studies for risk factor identification.
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Chapter 2. Continuous  Vital  Signs
Derived Feature Extraction and Analytic
Frameworks for Identifying Risk Factors
in Preterm Infants

2.1. Introduction

In recent NICU studies, continuous vital signs, sampled at higher frequencies (0.03
Hz to 2 Hz) than traditional EMR data, are being analyzed for their association with
major complications and mortality in preterm infants, and for developing predictive
models [34, 35, 39, 64]. These predictive models demonstrated superior performance
compared to EMR-based approaches, and comparable accuracy to ECG-based
predictive models, implying significant clinical potential. These data are being used
not only for monitoring but also for identifying physiological markers, predictors,
and risk factors that are not detectable using conventional EMR-based data.

Even with the significant potential of continuous vital signs, the considerable
computational demands remain a major challenge to advanced research. For this
reason, many studies identifying clinically relevant variables are still limited to
extracting continuous vital sign features based on basic descriptive statistics or
established measures, such as HRC and HRV. The discovery, development, and
validation of novel time series analysis methods inherently necessitate significant
time and computational resources. Consequently, researchers in medical engineering,
deep learning, and medical statistics dedicate substantial effort to validating newly
identified or proposed clinical risk indicators and assessing their applicability across

diverse clinical contexts. Notably, unlike adults, analyzing continuous vital signs in
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preterm infants requires specific methodological consideration due to the variation
in their physiological characteristics with developmental maturity. Furthermore,
analytical challenges are compounded by small patient cohorts, the low incidence of
major comorbidities and mortality, and the frequently unidentifiable precise onset
times of adverse clinical events. Therefore, research on analytic methodologies and
frameworks is essential to accelerate early-stage continuous vital sign studies and
mitigate the aforementioned challenges. However, current frameworks and
analytical methodologies within the clinical domain lack the maturity to provide the
comprehensive understanding required by all stakeholders.

To address this, some studies have applied time-series feature extraction
techniques, either domain-specific or domain-agnostic, to derive more informative
representations of NICU monitoring data [34, 35, 39]. These methods aim to retain
the temporal complexity of the original signals and improve clinical relevance.
However, most studies to date have only confirmed previously known features rather
than identifying new or context-specific ones [34]. Additionally, downsampling
techniques, such as random selection or averaging (e.g., grand mean), were applied
to manage the high sampling frequency [30, 34, 35, 39]. While these approaches
simplify processing, they might result in a loss of temporal resolution and fail to
capture transient physiological changes. Moreover, the feature selection and analysis
methods applied in the clinical studies have generally lacked scalability, limiting
their applicability in larger, multicenter studies or real-time clinical settings.

This chapter introduces a methodological framework for extracting and
efficiently selecting novel physiological features that are linked to major
complications and mortality in preterm infants. Unlike previous studies that
commonly applied downsampling techniques, this approach supports the full

temporal resolution of the data to capture subtle physiological dynamics that may be
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clinically significant. It is specifically designed to support real-time feature
extraction and analysis in routine clinical settings. To assess its computational
efficiency, the proposed method was evaluated against established feature selection
algorithms by comparing processing time and resource usage under equivalent
feature sets. In addition, the characteristics of the features generated through the
proposed method will be examined in relation to specific complications and

mortality outcomes.

2.2. Methods

2.2.1. Design Principles

This study focused on designing and implementing continuous vital signs analytical
methodologies and frameworks by systematically addressing the identified
limitations of existing continuous vital signs analysis. Furthermore, we proposed
algorithms to address analytical challenges resulting from the heterogeneous nature
of NICU patient populations across countries and institutions, including variations
in intervention procedures, demographics, and incidence rates of mortality and
morbidity.

To mitigate the insufficient accessibility of existing time series analysis
methods, other valuable analytical techniques, and domain-agnostic feature
calculations, we applied “off-the-shelf” approaches. In other words, the proposed
framework addresses the substantial computational demands in clinical domain
research, particularly those arising from the high-order time complexity associated
with features combining multiple time series segments (e.g., sample entropy), by

precomputing all necessary features via seamless libraries integration. These
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libraries consist of either directly implemented or externally imported essential
feature calculations. It also offers the flexibility to integrate methods from other
domains or novel Al models into the clinical setting.

Continuous vital sign data often yield high-dimensional feature sets, which pose
significant analytical challenges. Specifically, the multiple comparisons inherent in
feature selection processes can lead to a very high rate of false positives. Furthermore,
many feature selection methods require a large number of iterations to converge,
adding to computational burden. Moreover, analysis is complicated by immaturity
effects observed in preterm infant populations and avoidable biases frequently
encountered in observational studies. These biases include immortal time bias,
depletion of susceptible bias, confounding, and the false discovery problem. To
address these issues, we implemented several advanced techniques. First, we refined
and applied state-of-the-art FDR control methods to manage false positives
effectively. Second, to account for biases common in observational studies, we
applied an emulation of a matched case-control design.

Crucially, implementing both FDR control methods and emulation, particularly
when based on traditional sequential procedures, can be exceptionally time-
consuming. Therefore, we proposed algorithms that refined these two methods by
transforming traditional iterative algorithms into partitionable algorithms within our
frameworks, significantly enhancing computational efficiency. This refined
approach addresses the challenge of limited scalability and flexibility in feature
selection and analysis methods, which has historically restricted their applicability
in larger, multicenter clinical studies. Moreover, by enabling the utilization of
parallel or distributed computing techniques, which align with current trends in high-
performance computing, it substantially enhances computational efficiency and

overall scalability.

19



2.2.2. Time Series Analysis-based Feature Extraction

Approach

Continuous vital sign data, periodically recorded from patient monitors, consists of
high-frequency, high-resolution numeric measurements of multiple physiological
parameters, including heart rate, pulse, oxygen saturation, invasive arterial pressure,
and respiratory rate. These inherent characteristics allow continuous vital sign data
to be considered a distinct form of time series data. These signals exhibit substantial
temporal complexity and high dimensionality, making direct interpretation and
modeling challenging.

Given the inherent time series characteristics of continuous vital sign data, we
applied prominent time series analysis methodologies, such as time-domain,
frequency-domain, linear correlation, and information theory approaches, for feature
extraction [65-68]. Time series feature-based analysis is a widely used approach
across most domains, and as a result, extensive research and various implementations
for feature extraction have already been developed [66]. These methods were
selected to effectively capture the temporal structure and complexity of high-
resolution physiological time series data, beyond the capabilities of conventional
analytical approaches to extract clinically meaningful patterns and information that

may aid early risk assessment and support timely intervention in neonatal care.

2.2.3. Continuous Vital Signs Feature Calculation Methods

Due to the need to identify subtle, previously unrecognized physiological risk factors
and predictors of adverse outcomes in preterm infants, this study applied a wide
range of feature extraction and extraction methods drawn from diverse domains. To

capture the diverse temporal and statistical characteristics of high-resolution
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physiological signals, we applied a wide range of time series feature extraction
techniques grounded in well-established mathematical and statistical principles.
These features were categorized into the following theoretical classes to ensure both
interpretability and comprehensive signal representation.

Descriptive statistical methods were applied to characterize the overall
distributional properties of the continuous vital signs. These included measures of
central tendency, dispersion, and higher-order moments (e.g., skewness and kurtosis),
which capture asymmetrical and tail behavior [69, 70]. These features provide
essential baselines for identifying abnormal clinical symptoms, such as desaturations
which may easily be identified by descriptive statistics [69, 71]. These features are
widely adopted in studies utilizing continuous vital signs, serving as a
comprehensive framework for physiological data analysis [30, 35, 72].

Time-domain analysis methods were implemented to capture local dynamics
and signal shape characteristics [65, 73]. Features such as the longest consecutive
runs above or below the mean, first and last positions of local maxima and minima,
and threshold-based counts were used to quantify signal excursions, volatility, and
event durations[66, 74]. These properties are particularly relevant in detecting
transient physiological events, such as apnea episodes or episodic desaturation,
which may not be evident in aggregated summary statistics.

We also implemented correlation-based features to model temporal dependence
and repetitive patterns within the signals [67, 68]. Classical autocorrelation and
partial autocorrelation functions were used to identify short- and long-range
dependencies, providing insight into regulatory patterns in cardiorespiratory signals
[36].

Frequency-domain and spectral methods were computed to analyze the

distribution of power across different frequency bands [67, 68, 75-79]. Fourier
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analysis and wavelet-based methods were applied to extract both stationary and
transient periodic components, with the aim of capturing lower-frequency
characteristics not typically observed in conventional ECG frequency features [13,
14]. Welch's method [80] was used to estimate power spectral density with reduced
variance.

Entropy and information theory-based methods were also applied to quantify
the regularity, complexity, and unpredictability of the continuous vital sign time
series [81-83]. Features derived from approximate entropy, sample entropy,
permutation entropy, and Lempel-Ziv complexity[84] provide estimates of signal
irregularity based on symbolic representations or probability distributions. These
metrics are particularly sensitive to subtle changes in physiological regulation and
have been associated with pathophysiological states such as sepsis, neurological
instability, and poor autonomic tone [30, 81].

Lastly, Linear regression- and model-based methods were derived by fitting
linear models and stochastic differential equation (SDE) approximations to segments
of the vital sign data [66, 74]. Linear trend coefficients describe the direction and
rate of physiological change over time, while Friedrich coefficients capture drift and
diffusion characteristics under the assumption of nonlinear stochastic dynamics.
These features allow for interpretable modeling of trends, such as progressive
bradycardia or deteriorating oxygenation, which unfold over longer durations.

Additionally, considering that vital sign data from patient monitors are recorded
as integers, the index of qualitative variation (IQV) [85-91] was also applied to
account for this characteristic. Vital sign data collected from patient monitors,
including heart rate, respiratory rate, and peripheral oxygen saturation, are typically
stored as discrete integer values due to limitations in hardware precision and the

requirements of real-time clinical monitoring. Unlike continuous, high-resolution
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waveforms such as ECG, these discretized signals offer limited granularity, which
can obscure subtle physiological variations when analyzed using conventional
statistical measures. To address this issue, the IQV was incorporated into the feature
extraction process. IQV is particularly effective for analyzing non-continuous or
discretized data, as it captures distributional variability that traditional metrics like
mean and standard deviation may overlook, especially when the data have been
rounded or encoded at low resolution. By applying 1QV, the feature set gains
additional representational depth, which can be especially beneficial in studies with
small sample sizes or imbalanced class distributions. In such cases, reliance solely
on standard numerical descriptors can compromise model performance, whereas the
inclusion of qualitative variability measures offers a complementary approach to
detecting clinically relevant patterns.

We utilized several Python libraries, including NumPy [92], SciPy [93], tsfresh
[74], statsmodels [94], and librosa [95], to implement the previously described
feature extraction techniques. For algorithms not provided by these packages, we
implemented the required methods. To optimize performance and mitigate the
performance degradation resulting from Python’s iteration process, we compiled

time-critical code sections with LLVM using Numba [96].

2.2.4. Continuous Vital Signs Feature Analysis and

Selection

We defined the analytical problem as a multivariate time series classification task to
optimize the interpretation and utility of the analysis results. Based on this problem
definition, we designed an effective methodological framework to conduct statistical
analysis and hypothesis-driven feature evaluation aimed at identifying variables

significantly associated with adverse clinical outcomes such as complications and
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mortality. To achieve this, we utilized various domain-agnostic feature selection
algorithms [74], which were combined or refined as necessary, to meet the aims of
this study as schematically represented in Figure 2-1.

Feature Analysis & Selection Process
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Figure 2-1. Proposed feature analysis and selection method.

Features derived from continuous vital signs present several distinct analytical
challenges. Firstly, the large number of extracted features and their unclear
physiological implications challenge traditional clinical expert-driven selection
approaches. Secondly, this dataset inherently exhibits high dimensionality, where the
number of features p frequently exceeds the available sample size n. Lastly, the
dynamic growth trajectory of preterm infants leads to significant time-dependent
variations in vital sign-based features.

Research in preterm infants, characterized by a large number of candidate
predictors and risk factors relative to a small, highly heterogeneous patient

population, shares methodological similarities with Genome-Wide Association
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Studies (GWAS). In single nucleotide polymorphism (SNP) studies, bootstrapping
and FDR control methods have been frequently used to identify robust risk factors
and associations [97-99]. Therefore, this study proposed methods for efficiently
controlling the FDR in large feature sets while enabling parallel computing and aims
to implement these methods as a framework.

This study implemented a multiple data-splitting FDR procedure, adapted from
the method of Dai, et al. [41] for distributed computing. Dai, et al. originally
proposed a data-splitting approach to FDR control, based on Least absolute
shrinkage and selection operator (Lasso) and Ordinary Least Squares (OLS)
regression, to overcome the limitations of conventional FDR methods. Their
framework demonstrated high efficiency and strong performance in relevant feature
selection within high-dimensional datasets.

We adopted this FDR control framework for several reasons. Firstly, data
splitting, which involves randomly partitioning a dataset for analysis, inherently
facilitates distributed processing. Secondly, the applicability is straightforward,
requiring only that the estimated coefficients be symmetric around zero, a condition
easily met in our context.

However, a notable drawback of the original study is its dependence on Lasso
regression to derive coefficient values. As the feature dimension increased, the
number of iterations required for convergence, and consequently the computational
time, substantially escalates. Given the nature of convex optimization problems,
Lasso-based feature selection methods are substantially limited in p>n scenarios
[100]. Furthermore, the original Lasso implementation is restricted in the
parallelization transformation because its convergence requires the outputs from
prior iterations. Therefore, to retain the advantages of FDR control via data splitting
while enabling effective parallel processing, we modified the original approach for
application in this research.

In this study, we formulated mirror statistics based on the equations [41, 101].
25



Mirror statistics exhibit several key properties. First, relevant features, which those
highly associated with response variables or events, yield larger positive mirror
statistics. Second, irrelevant or null features tend to produce mirror statistics that are
close to zero or symmetric around zero.

These characteristics are achieved by merging the coefficients from two split
estimators. This design offers a significant advantage. Even if a false positive
association inadvertently arises from one estimator, the differing association from
the other estimator helps ensure the merged result is symmetric around zero. This
makes the mirror statistics more robust than those derived from a single estimator
and facilitates straightforward application. We used the following equation to

calculate mirror statistics M; in this study.

= sign (5,°8,7) (18™116,1),

where E(l), [3}(2) are the estimated coefficients for the features obtained from
each data split, and merging function f(u,v) = uv. To compute the mirror statistics,
we utilized estimators based on the Chi-Squared test, information gain[102], and the
Kolmogorov-Smirnov(KS) test [ 103]. For the Chi-Squared test, numerical variables
were binned into a 2x2 contingency table using the chi-merge method [104]. To
estimate SV, numerical variables were transformed into 2x2 contingency tables
using the chi-merge method. The resulting Chi-Squared test p-values were then
adjusted using the FDR-BY procedure and subsequently merged with the signs
derived from OLS regression coefficients. This merging with the OLS-derived sign
was performed to ensure the resulting statistics were symmetric around zero. ()
was calculated based on information gain statistics and subsequently combined with
results from the KS test to achieve symmetry around zero. In Dai, et al. [41] study,

the function f(u,v) = u + v was chosen as the optimal transformation to ensure
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the sampling distribution of the mirror statistics M; maintained symmetry around
zero and simultaneously achieved maximal statistical power. However, in the context
of this study, where the Chi-Squared test is adopted and a 2x2 contingency table
arrangement results in Chi-Squared statistics equivalent to squared Z-test statistics,
we opted for f(u,v) = uv to fulfill the crucial symmetry assumption for the mirror
statistics. The cutoff methodology in this study follows that of the data-driven cutoff

approach proposed by Dai, et al. [41]. The data-driven cutoff 7, as followed.

. £>0 #{j:Mj<—t}<
fa = M #M > v
where q € (0,1) is the target FDR control level, and M; is the mirror statistics of
the jth feature.

Feature selection for each subsample in this research was subsequently

conducted by implementing Algorithm 1.
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Algorithm 1. Feature Selection via false discovery rate control with multiple
data split replications

Input: D = {(x;,y;)}}_, : original dataset

m: number of data split replications

q: FDR control level

Output: Selected relevant feature set S

1. Initialize S « @

for i=1tom do

2. Split the data into two groups D), D),

3. Estimate the coefficient ) from Chi-squared statistics (chi-merge)
with OLS using D™,

4. Estimate the coefficient 8 from information gain and Kolmogorov-
Smirnov test using D).

5. Calculate the mirror statistics M; = sign (,6’] (2)) (|[>’](1)| |ﬁj(2)|).
#{j:Mj<-t}

#:Mp>tV1

7. Select the features S® « {j :M; > Tq} where 7, is the cutoff for FDR
level g.

8. Append S® to S.

6. Calculate the cutoff value Tq = min {t > 0:

for j €{1,2,...,p} do

m  1(jes®)

k=1 |st|v1"

10. find the largest £ € {1,2, ..., p} that satisfies [; + I, + -+ I, < q.
11. select the features S = {j:i; > E}

9. Estimate the associated inclusion rate 7; ==

Consequently, proposed methods were specifically designed to address two
methodological considerations. The first consideration is the crucial issue of FDR
control within a high-dimensional feature space. The second involves strategically
mitigating the confounding effects of immaturity and ongoing growth in preterm
infants. As mentioned in Chapter 1, preterm infants showed substantial inter-
individual variability in clinical severity directly result from their developmental
immaturity. As these infants mature, they progressively acquire the essential
physiological functions required for extrauterine survival. These developmental
changes lead to considerable fluctuations in vital signs. A critical challenge arises

because major clinical events, routinely investigated in NICU research, often
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manifest at disparate maturational stages, thereby necessitating robust analytical
strategies to account for these developmental discrepancies. Fundamentally, this
work endeavors to minimize avoidable biases induced from observational studies,
including immortal time bias, depletion of susceptible bias, confounding, and the
false discovery problem [105].

To mitigate the effects of immaturity observed in our observational study, this
research employed an emulation of a matched case-control design. This approach
aligns with a growing trend in recent clinical research and guidelines, where the
emulation of a target trial is increasingly applied to address the inherent limitations
of conventional observational studies [106]. Applying this target trial emulation not
only mitigates avoidable biases inherent in observational studies but also offers the
significant advantage of reducing ethical concerns and potential harm to patients
[105-107]. Therefore, leveraging these advantages, this study implemented an
emulation of a matched case-control study through bootstrapping, based on the
method outlined below. This approach was specifically motivated by research
focused on emulating patient target trials [108]. The emulation of a matched case-
control design was implemented as a procedure that aggregates feature selections
performed within subsamples, following Algorithm 1 as previously described. We
denoted the dataset as D = {(x;, y;, d;)}\=,, where x; € RP is the continuous vital
signs feature vector, y; is the response variables, and d; is the demographics

information of preterm infants i.
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Algorithm 2. Feature selection and aggregation via emulations

Input: D = {(x;,y;,d;)}L, : original dataset

m: number of resamples

¢ € [0,1]: inclusion rate cut-off threshold

J : function for inclusion criteria

F(-): the proposed feature selection methods (Algorithm 1.)
Output: Selected relevant feature set S

1. Initialize S « @
for i=1tom do
2. Generate a subsample D@ of size N from D,
restricted to sample satisfying 7(d;) = True, with replacement.

3. LetX® € R™*?,Y € R™

denote the feature and response vector corresponding to D®.
4. Apply the feature selection methods, SO T(X(i), Y(i)).
5. Append S® to S.

for j €{1,2,...,p} do
— ies®
6. Estimate the associated inclusion rate [, = % {4 %
7. find the largest £ € {1,2, ..., p} that satisfies [; + I, + -+ I, < c.

8. select the features $ = {j:f; > I}}

Finally, to enable the application of the aforementioned feature selection

methods and the bootstrap-based subsample feature selection and aggregation

procedure to parallel computing, we configured the system as follows (Algorithm 3).

Our proposed algorithm enhances efficiency by not copying and transferring the

entire dataset. Instead, it provides only the keys T required to access the data,

enabling efficient task set partitioning and registration to individual server job pools.

Additionally, this design inherently simplifies partition configuration, as each unit

task of T solely requires ensuring result collection at its terminal point. Although

Algorithm 3 defines K in terms of server units, it offers the flexibility to partition K

based on alternative criteria as necessitated by varying contexts. Beyond this, the

system can be structured to support dynamic resource allocation and processing by

integrating load balancing capabilities.
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Algorithm 3. Parallelized replication for feature selection in high-
dimensional data

Input: D = {D(i)}?i L subsampled datasets
. . n;
D = {(xj(‘), yj(l))}j:l: the ith subsample dataset
m: number of resamples
p: number of features
K: number of servers
F(-): the proposed feature selection methods (Algorithm 1.)

Output: Selected relevant feature set S

Part I: Construct job list
1. Construct task set of all Mp jobs:
T={GNliel2.mjel2,..p}
2. Flatten the task set, and divide into K disjoint parts:
kMp (k+1)Mp

T = UL, 7®, where T® = {(i,)) € T|flat index € [T-I_ 1, X 1}

Part II: Distribute to servers
3. Send each task set 7 to kth server.

Part III: Local computation
4. On the kth server, compute feature selection methods

Si,j = j]:(xj(i)’ j(i))’ where (i,j) e T®

Part IV: Aggregation

5. Gather all computed selected feature sets from servers, reconstruct matrix:
S =1[S;;] e R™*?

for j €{1,2,...,p} do

1em 1(jes®)

m k=1 |30)|y1

7. find the largest € € {1,2, ..., p} that satisfies I; + I, + -+ I, < c.

8. select the features S = {j:E > I:z}

6. Estimate the associated inclusion rate 7; =

2.2.5. Data Analysis Framework Implementation

In the implementation phase, we evaluated the scalability and parallel processing
capabilities of these computationally demanding methods, as detailed previously.
Therefore, this study proposed and implemented the scalable continuous vital sign

analysis process, assuming the infrastructure outlined in the scenario is already in
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place (Figure 2-2).
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Figure 2-2. Proposed continuous vital signs analysis process.

We considered the following design requirement. First, the framework has to

simultaneously process large volumes of continuous vital sign data. Unlike EMR

data, which are typically recorded selectively based on clinical judgment or

intervention, continuous vital sign data are collected automatically and non-

selectively through patient monitors in real time, without being influenced by

clinician intent. This objective and uninterrupted acquisition results in datasets that

are substantially larger relative to the sampling rate, often requiring computational

strategies designed for large-scale time-series data. To address the resulting

analytical demands, the MapReduce computing model (Figure 2-3) was applied

within the proposed framework to effectively handle the volume and structure of the

data [109, 110].
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Figure 2-3. MapReduce model [109].

While a MapReduce model is not optimized for real-time analysis or typical
healthcare IT environments, we adopted it for this study due to several key
advantages. First, it offers an intuitive and immediately applicable framework for
scalable continuous vital sign analysis. Second, the MapReduce paradigm is a proven
system for big data analysis, validated across numerous fields. Finally, its inherent
Split-Apply-Combine strategy facilitates the extensibility of bootstrapping methods,
which was crucial for this study [111]. By directly implementing this existing
distributed computing paradigm, we aimed to demonstrate the compatibility of our
proposed continuous vital sign feature extraction and analysis methods with modern
distributed computing architectures.

To assess the compatibility of our proposed methods with the fundamental
MapReduce paradigm, this study utilized CouchDB [112]. CouchDB is a document-
based NoSQL database specifically designed with the MapReduce computing model
as a core architectural principle.

Most NoSQL databases such as MongoDB, Aerospike, DynamoDB, Azure
Cosmos DB, Apache Ignite, and Cassandra, which often rely on separate aggregation

functions or in-memory approaches for rapid response, leading to performance
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variations based on optimization and server computational resources [113-120]. In
contrast, CouchDB's document store architecture provides a stable and predictable
environment. This made it particularly suitable for evaluating the minimum
performance baseline of the methodologies we proposed.

Furthermore, CouchDB aligns well with the practical needs of a typical clinical
institution. It facilitates incremental server expansion and contraction, which is
crucial for adapting to fluctuating demands. More importantly, for use in a clinical
setting, it offers high fault tolerance and availability, making it an ideal choice for
developing a robust database for this study.

In MapReduce model, implemented through CouchDB's view system, we
defined the three distinct views to process the input data and generate defined
document outputs. These views—an event view, a feature view, and a demographics
view—were designed to efficiently extract features from original vital signs, define

clinical events, and generate random subsamples (Figure 2-4).
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Figure 2-4. Map-reduce workflow for subsampling and feature extraction.

The Event view was specifically configured to capture the event timelines of

the preterm infants under investigation. Within its Map function, patient identifier,
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event name, and event time were defined as the group key. This view processed
emitted data as individual documents and did not implemented any reduce operations.

This design choice was made because, during the emulation of the analysis
enrollment process, only the event and demographic information for the study cohort
is required. Should additional document-specific details be necessary, it is more
efficient to query these documents subsequent to the enrollment phase; thus, a
Reduce function was not applied within this view.

The Demographics view was designed to capture the demographic information
of the preterm infants. In its Map function, patient identifier and key demographic
variables, such as gestational age and birth weight, were configured as the group key.
This view, similar to the Event view, did not define any Reduce function. This design
choice was based on the efficiency gained by performing initial patient screening at
the enrollment stage, with more detailed document queries executed as needed post-
enrollment.

The Feature view processed original continuous vital sign time series data. Its
Map function rounded measurement timestamps to the nearest hour, defining the
patient identifier, specific vital sign, and rounded measurement time as the key. This
data then passed through a Reduce function, generating the diverse domain-specific
features discussed in the preceding section. While CouchDB's views typically use
JavaScript Map-Reduce, we implemented distributed processing by loading these
operations to a separately configured Docker-based Python query server container.
This design was specifically chosen to enhance processing speed and improve the
extensibility of feature calculation functions.

The implementation of the case-control study emulation and the feature

selection methods followed the workflow depicted in Figure 2-5.
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Figure 2-5. Integrated workflow for emulating Case-Control studies and

feature selection.

The feature selection workflow, implemented in this study, comprises four
distinct steps based on Algorithm 3, as introduced in the preceding steps.

Step 1: This initial step involves extracting patient identifiers that satisfy the
predefined inclusion criteria for the infants under investigation. Specifically, patient
identifiers for both the event and control groups are first retrieved from the Event
view. Subsequently, corresponding demographic entries and patient identifiers
matching these inclusion criteria are extracted from the Demographics view for
verification.

Step 2: This step performs the actual bootstrapped emulation of a case-control
study. Patient identifiers are randomly selected based on numbers generated by a
random generator to form subsamples. From these subsamples, feature sets for
analysis are extracted using patient identifiers, event time, and vital signs as keys.

Step 3: In this step, relevant features are selected utilizing the methods and
procedures implemented in Algorithm 1 of this study.

Step 4: The final step involves re-selecting relevant features from each
subsample based on their inclusion rate, as detailed in Algorithm 2 and 3, to yield
the set of relevant features.

This implementation, structured as described, offers significant parallel
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processing capabilities. With the exception of Step 4 (the aggregation phase), all
tasks were designed as independently computable units. This flattened task set
allows for several levels of parallelization: local parallel processing of feature
estimation within individual subsample nodes, across different features, or even full
parallel processing of feature estimators based on subsample index.

Consequently, if additional computational nodes or parallel processing
resources are available, the system can flexibly handle multiple subsamples and their
corresponding feature coefficient estimations in a distributed manner prior to the
aggregation step.

A key consideration for the overall completion of this algorithm is that its
subsampling procedures cannot terminate until the full computation of all feature
estimators (Steps 2-3) has been performed for relevant feature selection. This
scheduling consideration is a common and critical factor not only for this framework
but also for many parallel computing tasks. Fortunately, various methodologies and
solutions have been proposed to mitigate and resolve such issues, and these can be

similarly applied to the proposed framework in this study.

2.2.6. Validation Strategies

To validate the hypotheses underlying the methodologies and the implemented
framework proposed in this study, we first generated a synthetic dataset and
conducted a simulation study. The primary objective of this simulation study was to
determine whether our parallel approaches effectively reduce the computational
burden, particularly computation time, compared to conventional methods.
Concurrently, we aimed to verify the robustness of our methods when confronted
with features of unknown distributions. We also evaluated to characterize and

validate the performance of the proposed methods by evaluating the FDR and feature
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selection sensitivity for relevant features, considering varying levels of signal power,
sample sizes, and ratios of null (irrelevant) features.

Furthermore, we focused on validating the proposed methods using real-
world data pertinent to key NICU research topics. Simultaneously, this study
validated the proposed methods by identifying clinically significant variables and
evaluating their capacity to substantially enhance predictive model performance. Our
initial objective was to explore the generalizability and robust performance of our
predictive models. This included evaluating their ability to identify clinically critical
event predictors and also assessing the performance of the predictive models within
an external validation cohort. We also validated whether the identified features were
consistent with or distinct from previously established characteristics, thereby
evaluating our feature selection aligned with intended clinical interpretations. This
allowed us to determine the features were selected as intended. Then, we compared
the performance of an existing extubation readiness prediction model, which relied
on descriptive statistics. This was contrasted with a model incorporating features
extracted using our proposed continuous vital sign analysis methodology. This
comparison assessed whether our approach yielded superior performance compared
to existing descriptive statistics. Lastly, to determine if our methodology could
identify previously unrecognized physiological predictors or risk factors, we
extracted vital sign risk factor identification markers for IVH using the proposed

framework.

2.3. Results

2.3.1. Evaluation of Parallel Procedure in Execution Time

We evaluated the computational benefits of the proposed parallel procedure. We
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conducted simulation study to compare the execution time of our parallel approach
against a traditional sequential procedure across a range of data complexities, from
low-dimensional to high-dimensional datasets. We combined sample sizes n of 64,
256, 512, and 2048 with feature dimensions p of 10, 100, 1,000, and 10,000.

For the experimental setup, a single Kubernetes [121] cluster, configured with
Kind [122], was deployed on the single server. This cluster consisted of three nodes,
each allocated 8 cores for this analysis. Mean and standard deviation (SD) of
execution times were calculated from 200 repetitions. The execution time results are
presented in Figure 2-7, Figure 2-8.

For the feature dimension of p=10, the sequential procedure demonstrated a
marginally faster mean (SD) execution time of 0.376 (0.122) seconds compared with
the parallel procedure's 0.583 (0.139) seconds. However, the computational
advantages of the parallel approach became apparent as the number of features
increased. At p=100, the parallel procedure completed in 1.232 (0.367) seconds,
which was significantly faster than the sequential procedure execution time 2.481
(0.569) seconds. This performance divergence was increasingly pronounced with
higher feature dimensions. For p=1,000, the parallel procedure completed in 2.574
(0.507) seconds, whereas the sequential procedure required 22.016 (4.225) seconds.
At p=10,000, the parallel procedure demonstrated significantly faster execution at
15.060 (2.293) seconds, compared to 221.830 (59.631) seconds for the sequential

procedure.
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2.3.2. Evaluation of FDR and Sensitivity for relevant

features

To evaluate the performance of our proposed feature selection methodologies, we
conducted a simulation study based on the regression problem formula from

Frieman’s [123] study, as followed:
. 12
f(X) = 10sin(mwxyx, ) + 20 (x3 - E) + 10x, + 5x5 + €.

This formula allowed us to assess the sensitivity to relevant features and the

FDR. For this analysis, we set the sample size at 256 and fixed the number of true

relevant features at 5 and null features at 10,000. We then varied the case ratio at 0.1,

0.25, and 0.5 for different simulation runs. These ratios were selected to reflect

typical case-control patient ratio and feature dimensions commonly observed in
NICU research.

The results of the simulation runs are presented in Figure 2-9 and Figure 2-10.

Our proposed methodologies consistently demonstrated high sensitivity, even at low
41
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event rates. Notably, while traditional logistic regression-based feature selection
yielded a comparable FDR to our methods, it was unable to identify relevant features.
Conversely, the feature selection based on KS test and Chi-Squared test showed high
sensitivity at the event ratio of 0.1, but their FDR approached 1.0. This result
indicates a substantial number of null features were incorrectly identified as false

positives.
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Figure 2-10. False discovery rate results from the simulation study.

Therefore, our methodologies exhibited stable feature selection performance
even with a low case ratio. These findings suggest that a reasonable level of
sensitivity could be maintained using our partitioning and subsequent aggregation
methods.

% This chapter will be submitted to a peer-reviewed journal for publication.
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Chapter 3. Development and Validation
of a Predictive Model for Clinical
Critical Events in Preterm Infants
Admitted to the NICU

3.1. Introduction

In this chapter, we utilized the frameworks presented in preceding chapters to
identify predictors for the early detection of major complications, LONS and
mortality, in NICU preterm infants. Furthermore, we validated the identified
predictors in an external dataset to demonstrate the hypothesis that our proposed
frameworks enable the selection of robust relevant features.

In addition, we developed and validated a predictive model to evaluate whether
the features identified using the methodologies proposed in the previous chapter
contain sufficient information for forecasting clinical events in preterm infants
admitted to the NICU. Furthermore, we assessed the applicability of these features
in practical predictive modeling to determine their effectiveness in supporting early

risk detection and clinical decision-making.

3.2. Methods

3.2.1. Study Design

This study was approved by the Institutional Review Board of Seoul National

University Bundang Hospital (IRB No. B-1806-472-106). In this retrospective study,
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we used continuous vital sign data recorded from bedside patient monitors in the
NICU, as well as demographic information extracted from EMRs. The study
population included inborn infants admitted to the NICU at Seoul National
University Bundang Hospital (SNUBH) between March 2018 and December 2022,
and neonates admitted to the NICU at the University of Virginia (UVA) hospital
between January 2009 and December 2019 [35]. To develop a mortality prediction
model for low-birth-weight preterm infants, only those for whom continuous
monitoring data were available were included in the analysis. Furthermore, to reduce
methodological differences from previous studies, the analysis was restricted to
infants for whom heart rate and oxygen saturation data were available, consistent
with the variables used in prior work [35].

We included preterm infants with GA<32 weeks or birth weight<1,500 grams
for this study. Infants were excluded if GA or birth weight data were missing, or if
heart rate or oxygen saturation measurements were not available for a minimum of

24 hours.

3.2.2. Data sources

Demographic and clinical data for infants in the NICU at SNUBH were obtained
from the hospital’s EMR system. Continuous vital sign data were collected using
Philips patient monitors. The heart rate data used in this study was obtained from
two separate sources, with ECG-derived heart rate and pulse rate measured through
pulse oximeter both included in the analysis. Oxygen saturation was measured using
pulse oximeter, and respiratory rate was measured through chest impedance
monitoring. Blood pressure measurement data consisted of both invasive and non-
invasive methods. ECG-derived heart rate, pulse, oxygen saturation, respiratory rate,

and invasive blood pressure were stored at 30-second intervals, whereas non-
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invasive blood pressure was typically recorded at 30-minute intervals.

In the NICU at the UVA Hospital, ECG-derived heart rate measured by the
BedMaster Ex bedside monitoring system was sampled and stored at 0.5 Hz.
Similarly, oxygen saturation data measured by the Masimo SET pulse oximetry

device were also sampled at 0.5 Hz and used in the analysis [35].

3.2.3. Eligibility criteria and outcome

In this study, the primary outcome was all-cause mortality occurring after the first
24 hours of life. The index time was defined as the designated clinical assessment
point. Infants who died during NICU admission were classified into the expired
group, with the index time set between 24 and 48 hours prior to death. Infants
meeting inclusion criteria who survived to discharge were assigned to the survival
group, with their respective index times categorized accordingly. For the
identification of predictors and subsequent model development, the prediction
execution time was defined as the point at which the predictive model was applied.
In cases of sepsis, the index time was established as the earliest date between the
blood collection time for a positive blood culture and the initiation of antibiotic
therapy within five days of that collection. For these sepsis predictions, the positive
class encompassed data from 24 to 48 hours preceding this index time. For all-cause
mortality, the index time corresponded to the time of death, with the positive class

being defined by data from 24 to 48 hours prior to this established index time.

3.2.4. Predictors

Features for the all-cause mortality predictive model were extracted using the
framework previously proposed. We utilized continuous vital signs, specifically

heart rate (derived from ECG and pulse oximeter), invasive or non-invasive blood
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pressure, and respiratory rate, as inputs for the predictive model. To assess both
short-term and long-term effects, data were analyzed across various window sizes:
1, 2, 3, 6, 12, and 24 hours. For feature extraction, continuous vital signs features
were generated using all possible combinations of measured vital signs, the various
domain-specific feature calculation methods described in Chapter 2, and defined
observation window sizes (1, 2, 3, 6, 12, 24 hours). This means that each unique vital
sign-feature calculation method pair was applied across every specified observation

window size.

3.2.5. Statistical Analysis

Descriptive statistics were employed to summarize baseline characteristics.
Normality of continuous data distributions was evaluated using the Kolmogorov—
Smirnov test. Variables with normal distribution are presented as means with
standard deviations (SD) and compared using two-sided Student’s ¢ tests. For
variables not conforming to a normal distribution, medians with interquartile ranges
(IQR) were reported and comparisons conducted using the Mann—Whitney U test.
Categorical variables were analyzed using the Chi-Squared test or Fisher’s exact test,
as appropriate. Variables with more than 50% missing observations were excluded
from further analysis. All statistical tests were two-sided, and a p-value of less than

0.05 was considered statistically significant.

3.2.6. Predictive Model Development and Evaluation

We utilized the PyCaret package [124] for the training, optimization, and validation
of our predictive models. The models in this study included logistic regression,
decision tree classifier, random forest [125], multilayer perceptron (MLP), gradient

boosting machine [126], AdaBoost [127], Naive Bayesian, and Ridge classifier.
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Hyperparameter tuning and scaler fitting were performed on the development cohort,
with stratified 5-fold cross-validation applied for hyperparameter tuning within this
cohort. To assess model robustness, the trained models were evaluated on
independent internal and external validation cohorts without further calibration.
Model performance was compared using accuracy, area under the receiver operating
characteristics curve (AUROC), average precision (AP), recall, precision, and F1

score.

3.3. Results

3.3.1. Study Population

From 436 infants admitted to the SNUBH NICU between March 2018 and December
2022, preterm infants born from March 2018 to June 2021 were allocated to the
development cohort, while those born from July 2021 to November 2022 constituted
the internal validation cohort. (Figure 3-1 A). For external validation, 1,689 infants
met the inclusion criteria were identified from a cohort of 6,837 infants admitted to

the UVA NICU between January 2009 and December 2019 (Figure 3-1B).
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Figure 3-1. Development and internal and external validation cohort to
develop and evaluate all-cause predictive models. (A) Development cohort and

internal validation cohort. (B) External validation cohort.

Table 3-1 shows the demographic and clinical characteristics of the three study
cohorts. The development cohort included 297 patients, of whom 276 survived and
21 died during the admission. Comparing the expired and surviving preterm infants,
the expired group demonstrated significantly lower mean GA (25.4 [2.3] weeks) and
birth weight (688.7 [273.1] g) compared to the survival group (31.2 [1.9] weeks and
1431.1 [341.5] g, respectively).

The internal validation cohort showed similar demographic trends to the
development cohort. Of these 139 preterm infants, only 6 preterm infants expired
during the admission. Consistent with findings from the development cohort, the
expired group in the internal validation cohort exhibited significantly lower GA (24.3
[0.5] weeks) and birth weight (618.3 [149.6] g) compared to the survival group (GA,
30.9 [2.1] weeks; birth weight, 24.3 [0.5] g). The external validation cohort included
1,563 preterm infants, with 113 infants in the expired group, showing demographic
trends similar to the SNUBH preterm infants. In the external validation cohort, the
expired group exhibited significantly lower mean [SD] GA (27.1 [3.5] weeks) and

birth weight (954.4 [441.2] g) compared to the survival group. Notably, comparing
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the expired preterm infants from the UVA with those from SNUBH, the UVA group
had slightly higher birth weight and GA.
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Table 3-1. Baseline characteristics.

Development Cohort

Characteristics All Survival Group Expired Group p-value
Number of infants 297 276 21
Gestational Age, mean (SD) 30.8 (2.5) 31.2(1.9) 254 (2.3) <0.001
Birth weight, mean (SD), g 1378.6 (387.0) 1431.1 (341.5) 688.7 (273.1) <0.001
Gender, n (%)
Female 141 (47.5) 130 (47.1) 11 (52.4) 0.810
Male 156 (52.5) 146 (52.9) 10 (47.6)
APGAR 1 min, mean (SD) 57(1.8) 57(1.7) 3.0(1.5) 0.007
APGAR 5 min, mean (SD) 7.9(1.3) 7.9(1.2) 6.2 (1.5) 0.032
APGAR 10 min, mean (SD) 7.7 (0.9) 7.9 (0.7) 6.0 (0.1) 0.036
Internal Validation Cohort
Characteristics All Survival Group Expired Group p-value
Number of infants 139 133 6
Gestational Age, mean (SD) 30.6 (2.5) 30.9 (2.1) 24.3 (0.5) <0.001
Birth weight, mean (SD), g 1339.4 (429.8) 1372.0 (409.3) 618.3 (149.6) <0.001
Gender, n (%)
Female 68 (48.9) 66 (49.6) 2(33.3) 0.681
Male 71 (51.1) 67 (50.4) 4(66.7)
APGAR 1 min, mean (SD) 5.2(1.8) 5.2(1.8) 3.0(1.7) 0.152
APGAR 5 min, mean (SD) 7.6 (1.4) 7.7 (1.3) 43(2.9) 0.177
APGAR 10 min, mean (SD) 6.4 (2.4) 7.0 (1.4) 5.3(3.8) 0.530
External Validation Cohort
Characteristics All Survival Group Expired Group p-value
Number of infants 1689 1570 119
Gestational Age, mean (SD) 29.1(3.1) 29.2 (3.0) 27.1(3.5) <0.001
Birth weight, mean (SD), g 1259.3 (472.1) 1282.3 (466.5) 954.4 (441.2) <0.001
Gender, n (%)
Female 789 (46.7) 741 (47.2) 48 (40.3) 0.177
Male 900 (53.3) 829 (52.8) 71 (59.7)
APGAR 1 min, mean (SD) 5.2(2.6) 5.4 (2.6) 3.2(2.3) <0.001
APGAR 5 min, mean (SD) 6.9 (2.0) 7.1(1.9) 53(2.4) <0.001
APGAR 10 min, mean (SD) 6.7 (1.8) 6.8(1.7) 5.7 (2.0) <0.001

3.3.2. Identified Features of Clinical Critical Events

The primary features selected using the proposed framework are detailed in Table
3-2. For heart rate, sample entropy, multiscale sample entropy, permutation entropy,
approximate entropy, and absolute sum of change were identified as important
features from both ECG and pulse oximeter data. Notably, the expired group
consistently exhibited significantly lower mean [SD] values across several entropy
measures: approximate entropy (1.112 [0.118] vs. 1.469 [0.139]) and multiscale

sample entropy (0.663 [0.355] vs. 1.176 [0.315]). In addition to information-
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theoretic methods, decorrelation time selected as a key feature derived from heart
rate. Contrary to the entropy-based features, the expired group demonstrated a
significantly higher mean [SD] decorrelation time (21.561 [6.236]) compared to the
survival group (14.281 [4.440]). This similar tendency was observed in heart rate
measured from pulse oximeter. For blood pressure, in contrast to high-frequency
vital signs, mid-range, median, and mode were identified as primary indicators, with
the expired group consistently exhibiting lower values than the survival group for

these features.

Table 3-2. Selected features for all-cause mortality from the development

cohort.

Features Survival Expired p-value
HR, absolute sum of changes; 24h 8071 (2787.638) 4161.564 (3436.378) <0.001
HR, approximate entropy (m=2, r=0.1), 24h 1.469 (0.139) 1.112 (0.118) <0.001
HR, approximate entropy (m=2, r=0.9), 6h 0.282 (0.094) 0.158 (0.118) <0.001
HR, decorrelation time, 24h 14.281 (4.440) 21.561 (6.236) <0.001
HR, multiscale sample entropy (m=2), 24h 1.176 (0.315) 0.663 (0.355) <0.001
NBP-D, mid-range, 12h 40.280 (6.922) 31.022 (7.671) <0.001
NBP-D, mode, 24h 38.008 (6.718) 26.116 (7.751) <0.001
NBP-S, median, 24h 64.954 (6.426) 50.938 (10.077) <0.001
NBP-S, mode, 6h 60.298 (8.013) 50.325 (14.511) 0.014
Pulse, approximate entropy (m=2, r=0.3), 3h 0.884 (0.194) 0.522 (0.366) <0.001
Pulse, approximate entropy (m=2, 1=0.9),12h 0.265 (0.079) 0.134 (0.103) <0.001
Pulse, permutation entropy (d=3, tau=1), 12h 1.722 (0.034) 1.541 (0.163) <0.001
Pulse, sample entropy, 12h 1.060 (0.267) 0.536 (0.345) <0.001
Abbreviations: HR, heart rate d from an el di NBP-D, invasive diastolic blood pressure; NBP-S non-invasive systolic blood pressure; Pulse, heart rate measured

from a pulse oximeter.

To assess whether the proposed framework selects a consistent feature set
during the external validation, we performed the same feature extraction and
selection procedure (Table 3-3). The external validation cohort, being larger and
containing more data than the SNUBH development cohort, resulted in a greater
number of selected features. Consistent with the development cohort, entropy-based
features were predominantly extracted from heart rate measurements. Similarly, both

entropy and decorrelation time features from SpO, were selected, consistent with
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findings for sepsis. However, features derived from non-invasive blood pressure,
which had a much wider measurement interval, were not identified as key mortality-
associated features in the external validation cohort, unlike in the development

cohort.

Table 3-3. Selected features for all-cause mortality from the external

validation cohort.

Features Survival Expired p-value
HR, approximate entropy (m=2, r=0.9), 3h 0.445 (0.147) 0.230 (0.176) <0.001
HR, decorrelation time, 6h 11.571 (4.927) 18.876 (5.968) <0.001
HR, mutiscale sample entropy (m=2), 2h 1.597 (0.454) 0.832 (0.654) <0.001
HR, permutation entropy (d=6, tau=1), 24h 6.113 (0.245) 5.527 (0.694) <0.001
Pulse, approximate entropy (m=2, 1=0.3), 2h 0.932 (0.160) 0.632 (0.263) <0.001
Pulse, approximate entropy (m=2, 1=0.1), 24h 1.548 (0.210) 1.187 (0346) <0.001
Pulse, approximate entropy (m=2, 1=0.9), 1h 0.498 (0.145) 0.291 (0.206) <0.001
Pulse, approximate entropy (m=2, 1=0.9), 12h 0.419 (0.115) 0.228 (0.144) <0.001
Pulse, multiscale sample entropy (m=2), 24h 1.387 (0.306) 0.816 (0.446) <0.001
Pulse, permutation entropy (d=7, tau=1), 6h 6.301 (0.370) 5.986 (0.501) <0.001
Pulse, sample entropy, 12h 1.385(0.364) 0.802 (0.586) <0.001
SpO2, approximate entropy (m=2, 1=0.5), 6h 0.667 (0.253) 0.370 (0.240) <0.001
SpO2, approximate entropy (m=2, r=0.5), 12h 0.665 (0.238) 0.360 (0.223) <0.001
SpOa, approximate entropy (m=2, 1=0.7), 6h 0.474 (0.182) 0.281 (0.185) <0.001
SpO», approximate entropy (m=2, r=0.7), 12h 0.457 (0.185) 0.244 (0.149) <0.001
SpO», approximate entropy (m=2, r=0.7), 24h 0.440 (0.166) 0.242 (0.136) <0.001
SpO, decorrelation time, 24h 7.519 (6.099) 16.145 (8.420) <0.001
SpO», Fourier entropy (bins=5), 6h 0.419 (0.216) 0.274 (0.246) 0.001
‘Abbreviations: HR, heart rate 1 from an electrocardi  Pulse, heart rate measured from a pulse oximeter; SpOs, oxygen saturation.

For LONS, features extracted from SpO, were predominantly selected as key
indicators (Table 3-4). Consistent with findings for all-cause mortality, the heart rate
decorrelation time was significantly longer in the sepsis group (2.448 [1.995])
compared to the control group. Entropy-based features were identified exclusively
from pulse oximetry device, showing lower entropy in the sepsis group relative to

controls.

53



Table 3-4. Selected features for late onset sepsis from the development cohort.

Features Control Sepsis p-value
HR, decorrelation time; 1h 1.3557 (1.565) 2.448 (1.995) <0.001
Pulse, approximate entropy (m=2, 1=0.5), 6h 0.643 (0.189) 0.454 (0.213) <0.001
Pulse, decorrelation time , 1h 4.731 (3.889) 8.300 (5.827) <0.001
Pulse, sample entropy, 12h 1.091 (0.286) 0.850 (0.362) <0.001
SpO, autocorrelation (mean), 2h 0.052 (0.141) 0.131(0.160) 0.002
SpO2, b-index, 12h 0.029 (0038) 0.057 (0.048) <0.001
SpO2, binned entropy, 1h 0.947 (0.540) 1.340 (0.512) <0.001
SpOz, decorrelation time, 2h 0.865 (0.753) 1.589 (0.767) <0.001
SpO2, decorrelation time, 3h 0.859 (1.353) 2.218(2.436) <0.001
SpOz, decorrelation time, 6h 0.712 (0.618) 2.638 (3.407) <0.001
SpO2, decorrelation time, 12h 3.082 (3.189) 7.394 (5.882) <0.001
SpO2, Fourier entropy (bins=100), 2h 2.656 (0.831) 1.970 (0.785) <0.001
SpO2, Fourier entropy (bins=100), 6h 2.941 (0.521) 2.117 (0.805) <0.001
Sp02, Gibb’s index (m=2), 6h 0.657 (0.227) 0.816 (0.183) <0.001
SpO2, index mass quantile (Q=0.6), 24h 0.601 (0.092) 0.599 (0.004) <0.001
SpO2, ranvr, 3h 0.008 (0.006) 0.014 (0.008) <0.001
SpO2, cross spectral density (Welch’s method), 12h 71.981 (85.121) 270.278 (253.700) <0.001
SpOz, vmr, 3h 0.042 (0.043) 0.168 (0.154) <0.001
SpO2, winsorized mean, 12h 98.664 (1.109) 96.804 (1.925) <0.001
Abbreviations: HR, heart rate d from an el di ; Pulse, heart rate measured from a pulse oximeter; SpO., oxygen saturation.

From SpO, data, features related to qualitative variation and those derived from
decorrelation time methods were chosen. While the control group exhibited
remarkably uniform decorrelation times across observation windows of 1, 2, 3, and
6 hours prior to the evaluation time (index time, t=0), the sepsis group demonstrated
a progressive increase in decorrelation time as the observation window expanded.
Furthermore, the Gibb's index was significantly higher in the sepsis group.

To evaluate the correlation among the 247,000 continuous vital sign features
generated in this study, specifically among the selected features, we calculated an
absolute correlation map (Figure 3-2, Figure 3-3, Figure 3-4, Figure 3-5). In the all-
cause mortality correlation matrix, we observed that pulse oximeter-derived heart
rate, which often excluded from analysis due to its perceived lower reliability,
exhibited a correlation with all-cause mortality similar to that of ECG-based heart
rate. A comparable correlation pattern was also evident for these features in relation

to late-onset sepsis.
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Figure 3-2. Absolute correlation matrix diagram in all-cause mortality (A)
Features clustering dendrogram, with leaves representing individual features

and nodes indicating clusters. (B) Features grouped by vital sign type.

Figure 3-3. Absolute correlation matrix diagram of selected feature in all-

cause mortality.
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Sp02

Figure 3-4. Absolute correlation matrix in late onset sepsis. (A) Features
clustering dendrogram, with leaves representing individual features and nodes

indicating clusters. (B) Features grouped by vital sign type.

Figure 3-5. Absolute correlation diagram of selected features in late onset

sepsis.
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3.3.1. Predictive Models Performance

To assess model performance and robustness, we conducted both the internal
validation cohort and the external validation cohort using the UVA dataset. Our
models demonstrated high performance across both validation cohorts (

Table 3-5, Table 3-6, Table 3-7, Table 3-8).

In the internal validation cohort, most models achieved a mean AUROC of over
0.800, indicating excellent performance. Similarly, high performance was observed
during the external validation. The Extra Trees Classifier showed the top
performance, exhibiting a higher mean AUROC (0.865; 95% CI, 0.864 — 0.866)
compared to other models. Notably, despite differences in demographics, data quality,
and sampling rates between the two datasets, we observed the generalizability of the
models.

Table 3-5. Performance of predictive models using the proposed continuous

vital sign analysis method frameworks for clinical critical events.

Internal Validation Cohort

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision  F1 Score
Proposed Analytic Methods

Logistic Regression 0.929 0.842 (0.939-0.845) 0.441 0.400 0.423 0.412
Naive Bayes 0.870 0.818 (0.815-0.822) 0.347 0.636 0.267 0.376
Random Forest Classifier 0.919 0.856 (0.853-0.859) 0.506 0.522 0.386 0.444
Extra Trees Classifier 0.926 0.879 (0.877-0.859) 0.506 0.504 0.418 0.457
Ada Boost Classifier 0.933 0.861 (0.858-0.865) 0.505 0.421 0.457 0.439
Gradient Boosting Classifier ~ 0.920 0.851 (0.847-0.854) 0.448 0.470 0.381 0.421
Decision Tree Classifier 0.862 0.618 (0.619-0.625) 0.140 0.339 0.177 0.233
MLP Classifier 0.892 0.745 (0.741-0.749) 0.274 0.405 0.262 0.318

Abbreviations: AP, average precision; AUROC, area under the receiver operating characteristic curve; MLP, multi-layer perceptron.
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Table 3-6. Performance of predictive models using the proposed continuous

vital sign analysis method frameworks for all-cause mortality.

External Validation Cohort

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision  F1 Score
Proposed Analytic Methods

Logistic Regression 0.759 0.792 (0.788-0.797) 0.294 0.665 0.158 0.255
Naive Bayes 0.068 0.501 (0.500-0.502) 0.084 0.994 0.062 0.117
Random Forest Classifier 0.907 0.837 (0.833-0.841) 0.419 0.411 0.311 0.354
Extra Trees Classifier 0.943 0.873 (0.869-0.877) 0.539 0.382 0.564 0.379
Ada Boost Classifier 0.832 0.827 (0.823-0.830) 0.343 0.559 0.198 0.292
Gradient Boosting Classifier ~ 0.920 0.824 (0.819 -0.829) 0.403 0.391 0.367 0.379
Decision Tree Classifier 0.868 0.632 (0.627-0.637) 0.145 0.368 0.198 0.257
MLP Classifier 0.516 0.677 (0.672-0.682) 0.145 0.753 0.091 0.162

Abbreviations: AP, average precision; AUROC, area under the receiver operating characteristic curve; MLP, multi-layer perceptron.

Table 3-7. Performance of real-time predictive models using the proposed

continuous vital sign analysis method frameworks for clinical critical events.

Internal Validation Cohort

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision  F1 Score
Proposed Analytic Methods

Logistic Regression 0.942 0.852 (0.852-0.853) 0.416 0.400 0.423 0.412
Naive Bayes 0.876 0.820 (0.819-0.821) 0.271 0.636 0.267 0.376
Random Forest Classifier 0.944 0.872 (0.871-0.873) 0.441 0.522 0.386 0.444
Extra Trees Classifier 0.946 0.891 (0.891-0.892) 0.468 0.504 0.418 0.457
Ada Boost Classifier 0.933 0.865 (0.865-0.866) 0.445 0.421 0.457 0.439
Gradient Boosting Classifier ~ 0.933 0.862 (0.862-0.863) 0.402 0.470 0.381 0.421
Decision Tree Classifier 0.862 0.617 (0.617-0.618) 0.101 0.339 0.177 0.233
MLP Classifier 0.900 0.757 (0.756-0.758) 0.227 0.405 0.262 0.318

"Abbreviations: AP, average precision; AUROC, arca under the receiver operating characteristic curve; MLP, multi-layer perceptron.

Table 3-8. Performance of real-time predictive models using the proposed

continuous vital sign analysis method frameworks for all-cause mortality.

External Validation Cohort

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision  F1 Score
Proposed Analytic Methods

Logistic Regression 0.759 0.758 (0.757-0.760) 0.216 0.665 0.158 0.255
Naive Bayes 0.068 0.500 (0.499-0.500) 0.062 0.994 0.062 0.117
Random Forest Classifier 0.909 0.837 (0.836-0.838) 0.353 0.405 0.317 0.355
Extra Trees Classifier 0.944 0.865 (0.864-0.866) 0.471 0.372 0.577 0.452
Ada Boost Classifier 0.832 0.807 (0.807-0.808) 0.264 0.559 0.198 0.221
Gradient Boosting Classifier ~ 0.920 0.813 (0.812 -0.814) 0.350 0.391 0.367 0.379
Decision Tree Classifier 0.868 0.634 (0.633-0.635) 0.112 0.368 0.198 0.257
MLP Classifier 0.516 0.663 (0.663-0.664) 0.104 0.753 0.091 0.162

Abbreviations: AP, average precision; AUROC, area under the receiver operating characteristic curve; MLP, multi-layer perceptron.

58




Internal Validation Cohort External Validation Cohort

Bootstrap reps: 100, sample size: 223 Bootstrap reps: 100, sample size: 1507

1€ positive rate)

TPR (true positive rate)

TPR (try

06 08 10

0.
FPR (false positive rate)

FPR (false positive rate,

Figure 3-6. Clinical critical event predictive models AUROC performance: (A)

Internal validation cohort, (B) External validation cohort.
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Figure 3-7. Real-Time clinical critical event predictive models AUROC

performance (A) Internal validation cohort, (B) External validation cohort.

3.4. Discussion

This study identified features associated with all-cause mortality and LONS in the

admitted preterm infants using continuous vital sign data, subsequently developing
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the predictive model with high performance and demonstrated generalizability in an
external validation cohort. The Extra Trees model demonstrated the top
discrimination performance, achieving an AUROC of 0.891 (95% CI, 0.891-0.892)
in the internal validation cohort and 0.865 (95% CI, 0.864-0.866) in the external
validation cohort, evaluating robust performance across both cohorts. Furthermore,
the selected features were consistent with existing indicators and revealed novel
utility from other domains.

Many studies have focused on identifying key risk factors and predictors for
mortality (including sudden infant deaths) and clinical deterioration in vulnerable
preterm infants within the NICU. This often involves integrating these insights with
artificial intelligence technologies for early detection. However, despite achieving
high performance in internal validation, most studies do not sufficiently address
external validation [64, 128]. Consequently, fundamental questions regarding
reproducibility and generalizability remain unaddressed, significantly impeding the
implementation of these predictive models in routine NICU clinical practice. In this
study, we demonstrated that our predictive model achieved high performance and
generalizability when applied to continuous vital sign data from an external
institution, utilizing the same feature calculation methods as the development cohort
without additional processing or calibration. This outcome suggests that continuous
vital sign-based features might mitigate limitations inherent to EMR-based
predictive models, which often suffer from significant inter-institutional and inter-
clinician variability [40]. Furthermore, the consistent high performance across
various patient monitor manufacturers suggests the broad adaptability of these
models for predicting preterm infant deterioration without requiring additional
equipment.

This study identified low heart rate entropy and decorrelation time as key
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features. While entropy-based heart rate features were frequently cited in research,
their utility has often been limited by significant inter-institutional variability,
making them robust only within single institutions [27, 40]. We validated the
importance of low heart rate sample entropy, a consistently identified key feature in
prior work, while simultaneously introducing heart rate decorrelation time, which
demonstrated potential for more robust applications. Notably, despite the known
heterogeneity in NICU settings leading to substantial inter-institutional variability in
sample entropy values, both institutions in this study showed consistently high
contributions from this feature. Such discrepancies have often been attributed to
demographic differences and measurement equipment. However, most previous
research on entropy-based features has reduced data resolution through techniques
like segmenting vital signs, random sampling, or using grand means/medians |30,
34, 35, 39]. This was primarily due to the computational demands of large-volume
continuous vital signs and the high resource requirements for approximate and
sample entropy. These approaches, while computationally efficient, limit
reproducibility due to disparate aggregation methods and risk missing subtle preterm
symptoms by downsampling high-frequency data. Our study mitigated these issues
by directly utilizing up to 24 hours of continuous vital signs, identifying sample
entropy as a highly interpretable and discriminative indicator when derived from
high-resolution, high-frequency data collected via bedside patient monitors. This
was further supported by consistent findings across both pulse oximetry and ECG
measurements.

% This chapter will be submitted to a peer-reviewed journal for publication.
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Chapter 4. Predictive = Modeling  of
Extubation Readiness in Preterm
Infants Using Real-Time Physiological
Data

4.1. Introduction

Preterm infants frequently require endotracheal intubation and invasive
mechanical ventilation during the early postnatal period, primarily due to pulmonary
immaturity, insufficient central respiratory drive, and surfactant deficiency. Although
mechanical ventilation is an important component of neonatal intensive care,
prolonged use is associated with increased risks of bronchopulmonary dysplasia,
neurodevelopmental sequelae, and all-cause neonatal mortality [129, 130].

In this chapter, we developed and validated a predictive model for extubation
success within 24 hours in preterm infants, using the proposed continuous vital sign
feature analysis framework. This study aimed to validate the hypothesis that features
derived from continuous vital sign time series data provide additional, clinically
meaningful information not detected by conventional traditional EMR-based
features. To evaluate this, model performance was compared against the previously
developed EMR-based NeXT Predictor [131] under identical experimental

conditions, to assess the potential superiority of the proposed approach.
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4.2. Methods

4.2.1. Study Design

This study was approved by the Institutional Review Board of SNUBH (IRB No. X-
2205-759-901). In this retrospective study, we used continuous vital sign data
recorded from bedside patient monitors in the NICU, as well as demographic
information extracted from EMR. The study population included inborn infants

admitted to the NICU at SNUBH between March 2018 and December 2022.

4.2.2. Eligibility Criteria and Outcome

This study enrolled preterm infants born at less than 32 weeks of GA who were
managed with mechanical ventilation via an endotracheal tube and underwent their
planned extubation attempt prior to 36 weeks of postmenstrual age (PMA). Infants
with major congenital anomalies or structural airway abnormalities were excluded,
as were those extubated within 6 hours of initial intubation. Only infants intubated
for more than 6 hours were included, thereby excluding cases of procedural
intubation. Unplanned extubations were excluded. Planned extubation was set as the
index (t=0) for outcome evaluation. The observation period was from NICU
admission to index data collection.

The primary outcome was the success or failure of the planned extubation in
preterm infants. Extubation success was defined as the absence of reintubation
within 72 hours following the planned extubation. Reintubations occurring within
10 minutes of extubation were excluded from the analysis, as it was not feasible to
reliably discriminate between true extubation failure and events such as unplanned

self-extubation or a misplaced endotracheal tube.
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4.2.3. Predictors

In this study, predictors for modeling extubation readiness in preterm infants were
derived using the continuous vital sign analysis framework described in the
preceding chapter. The dataset included all routinely collected vital signs from
patient monitors, including heart rate, pulse, oxygen saturation, blood pressure, and
respiratory rate. To assess both short- and long-term physiological dynamics, feature
observation windows were defined at intervals of 1, 2, 3, 6, 12, and 24 hours. For
each window, all possible combinations of time intervals, feature extraction methods,
and vital sign modalities were generated to construct a comprehensive feature set. In
cases where more than 50% of data within a given observation window were missing,
the corresponding feature was treated as missing value.

In previous NeXT-Predictor study, clinical and physiological data were
retrospectively analyzed to identify potential predictors of extubation failure [131].
Data was collected prior to extubation and, when applicable, prior to reintubation.
Routinely recorded vital signs—including heart rate, respiratory rate, body
temperature, oxygen saturation, and blood pressure—were included. Candidate
predictors derived from GA, birth weight, PMA at the time of extubation, male sex,
pre-extubation arterial blood gas measurements (pH and partial pressure of carbon
dioxide [pCO:]), and ventilator settings such as the fraction of inspired oxygen
(Fi0»), positive end-expiratory pressure (PEEP), mean airway pressure (MAP), and
ventilator respiratory rate setting. In addition, respiratory indices, including the
SpO»/FiO, (SF) ratio [132], Respiratory Rate Oxygenation (ROX) index [133],
respiratory severity score (RSS) were evaluated. Predictive features were derived by
applying time-domain methods to vital sign variables that were periodically

measured from admission to the index time point (Table 4-1).
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Missing data from ventilator setting was imputed using the last observation
carried forward (LOCF) method. This approach was selected for two reasons. First,
it helps preserve the original distribution of the data, which was critical given that
this study focused on the variability of physiological parameters; minimizing the
introduction of artificial bias or distortion of statistical properties was essential.
Second, most missing values were for ventilator settings, which EMR recorded only
when clinicians made substantial adjustments. In contrast, vital signs were
continuously and automatically recorded, resulting in minimal data loss. Given this
clinical context, we considered it reasonable to assume that unrecorded ventilator
values likely remained consistent with prior entries, and any potential changes during
the gap were presumed to be clinically insignificant.

Table 4-1. Feature extraction method used in NExT predictor model [131].
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4.2.4. Statistical Analysis

Baseline characteristics were analyzed using descriptive statistics. The distribution
of continuous variables was assessed for normality using the Kolmogorov—Smirnov
test. Variables following a normal distribution were reported as mean with standard
deviation (SD) and were compared using two-tailed Student’s # tests. Non-normally
distributed variables were reported as median with interquartile range (IQR) and
were analyzed using the Mann—Whitney U test. Categorical variables were compared
using either the Chi-Square test or Fisher’s exact test, as appropriate. Variables with
more than 50% missing data were excluded from the analysis.

Within the proposed continuous vital sign analysis framework, we conducted
200 iterations of bootstrap resampling with replacement to identify candidate
predictive features. To address the high dimensionality of the resulting feature set
relative to the sample size and to mitigate multicollinearity, variance inflation factor
(VIF) analysis was employed. Features with the highest VIF values were iteratively
removed, beginning with the most redundant, until a parsimonious and stable feature
set was finalized for model development.

In in NExT-Predictor, Statistical analyses were conducted using the statsmodels
[94] and tableone [134] Python libraries. Propensity score matching was applied to
identify candidate features that showed statistically significant differences between
the outcome and control groups. Univariable analyses were used to estimate adjusted
odds ratios (ORs) and marginal effects for each predictor, with GA and birth weight
included as covariates due to their known influence on extubation outcomes in
preterm infants. Continuous variables were assessed at the time of extubation using
univariable methods, such as Student’s ¢ test, while categorical variables were

evaluated using the Chi-Square test for baseline comparisons.
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4.2.5. Predictive Model Development and Evaluation

All classification models were developed using the PyCaret machine learning library
(v3.0) [124], which provided a unified API for model training, preprocessing, and
evaluation. The models included logistic regression, decision tree (DT), extra tree
forest(ET), random forest (RF), gradient boosting machine (GBM), stochastic
gradient descent (SGD) classifier, naive Bayes (NB), and extreme gradient boosting
(XGBoost). PyCaret’s classification module was used to automate pipeline
construction, including standardization, imputation, and cross-validation.
Hyperparameters were optimized using grid search within PyCaret’s built-in tuning
function. This approach enabled consistent preprocessing and fair comparison across
model types representing linear, probabilistic, and ensemble-based learning
algorithms. The development cohort was used for model development, including
stratified 10-fold cross-validation and hyperparameter tuning via grid search, with
F1 score as the primary optimization metric. The internal validation set, held out
from the initial split, was used only for final performance evaluation to ensure an
unbiased assessment. Details of the hyperparameter configurations and search spaces
are provided in Table 4-2. To avoid data leakage, all model tuning and selection were

performed strictly to the training data in the development cohort.
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Table 4-2. Hyperparameters for developing prediction models.

Classifier Parameter name Parameter range
Logistic Regression C 0.001 - 1,000
Penalty None, L1, L2
Class Weight None, Balanced
Random Forest number of estimators 50, 100, 300, 600, 1000,
2000
Maximum Depth 3,5, 10, Inf
Criterion gini coefficient, entropy
Gradient Boosting Loss Deviance, Exponential
Learning Rate 0.01-1.0
number of estimators 50, 100, 300, 600, 1000,
2000
Maximum Depth 3,5,10
XGBoost Learning Rate 0.01,0.1,0.3,1.0
number of estimators 50, 100, 300, 600, 1000,
2000
Maximum Depth 3,5,10, 15
Minimum Child Weight 1,3,5
Stochastic Gradient Loss Modified Huber, Log
Decent Alpha 0.0001, 0.00001, 0.000001
Penalty L2, Elasticnet
Decision Tree Criterion Gini Coefficient, Entropy
Maximum Depth 2,4,6,8,10,12
Complement Naive Alpha 0.001 — 1,000,000
Bayesian Fit Prior 1,0
Normalization 1,0

Model discrimination was evaluated using multiple performance metrics,

including accuracy, the area under the receiver operating characteristic curve

(AUROC), the area under the precision—recall curve (AUPRC), positive predictive

value (PPV), and negative predictive value (NPV).
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4.3. Results

4.3.1. Study Population

A total of 253 preterm infants met the inclusion criteria and were enrolled during the
study period. Of these, 185 infants (73%), born between March 2018 and December
2021, were assigned to the development cohort, and 68 infants (27%), born in 2022,
were allocated to the internal validation cohort. Extubation failure occurred in 69
infants (26%) across the entire study population—53 infants (29%) in the

development cohort and 16 infants (24%) in the internal validation cohort.

1,825 Infants admitted to NICU
from March 2018 to

December 2022
ecember N | 1,254 Excluded

GA>32 weeks
and BW>1,500g

571 Infants with GA<32 weeks
or BW<1,500 g

N 318 Excluded

No planned Extubation

Records < PMA 36 weeks
253 Infants included for analysis
Development Cohort Internal Validation Cohort
185 Infants (Birth Date between 2018 — 2021) 68 Infants (Born in 2022)
132 Extubation Success 52 Extubation Success
53 Extubation Failure 16 Extubation Failure

Figure 4-1. Development and internal validation cohort to identify predictors

and develop predictive models.

Table 4-3, Table 4-4 show a summary of the baseline characteristics within the

development cohort and the internal validation cohort, respectively. In the
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development cohort, the mean (SD) GA was 27.3 (2.5) and 29.2 (2.7) weeks in the
extubation and the extubation success group, respectively. The mean (SD) birth
weight was 896.7g (367.5) and 1,203.6g (472.9), respectively. There were no
statistically significant differences in ventilator settings at the time of extubation as
determined by the clinicians between the two groups. FiO, was 0.30 (0.05) in the
extubation success group and 0.32 (0.06) in the failure group; PEEP was 5.2 (1.1)
and 5.3 (1.0) cmH>O; MAP was 9.6 (1.5) vs 9.7 (1.6) cmH>O, respectively.

In the internal validation cohort, the mean (SD) GA was 25.5 (1.5) and 29.5
(2.7) weeks in the extubation and the extubation success group. The mean (SD) of
birth weight was 896.7g (367.5) and 1,203.6g (472.9), consistent with baseline
characteristics observed in the development cohort. Similarly, no statistically
significant differences in ventilator settings at the time of extubation, as determined

by the clinicians, were found between the two groups.

Table 4-3. Baseline characteristics in the development cohort.

Development Cohort

Characteristics All Extubation Extubation p-value
Success Group Failure Group
Number of infants 185 132 53
Gestational Age, mean (SD), weeks 28.7 (2.8) 29.2 (2.7) 27.3(2.5) <0.001
Birth weight, mean (SD), g 1135.0 (468.7) 1203.6 (472.9) 896.7 (357.5) <0.001
Gender, n (%)
Female 118 (43.2) 92 (43.4) 26 (42.6) 1.000
Male 155 (56.8) 120 (56.6) 35(57.4)
PMA at extubation (weeks) 31.3(2.1) 31.5(2.0) 30.7 (2.3) 0.004
Ventilation Variables
FiO,, mean (SD), 0.26 (0.09) 0.24 (0.07) 0.32(0.11) 0.001
PEEP, mean (SD), cm H.O 5.8 (0.8) 5.6 (0.7) 6.0 (0.8) 0.001
MAP, mean (SD), cm H,O 8.8 (1.6) 8.5(1.3) 9.4 (2.0) 0.001
Frequency mean (SD), rpm 31.6 (6.4) 31.5(6.0) 32.1(7.4) 0.511
Ventilation Variables after Post Extubation
FiO,, mean (SD), 0.30 (0.09) 0.27 (0.07) 0.35(0.10) <0.001
PEEP, mean (SD), cm H,O 5.9 (0.7) 5.7(0.7) 6.2 (0.7) <0.001
MAP, mean (SD), cm H,O 9.1(1.9) 8.5(1.6) 9.5(2.0) 0.002
Frequency mean (SD), rpm 34.1(9.1) 34.1(9.2) 34.1 (9.0) 0.992

Abbreviations: FiO,, faction of inspired oxygen; MAP, mean airway pressure; PEEP, positive end-expiratory pressure PMA, postmenstrual age.
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Table 4-4. Baseline characteristics in the internal validation cohort.

Internal Validation Cohort

Characteristics All Extubation Extubation p-value
Success Group Failure Group
Number of infants 68 52 16
Gestational Age, mean (SD), weeks 29.0 (2.7) 29.8 (2.5) 26.4 (1.9) <0.001
Birth weight, mean (SD), g 1139.3 (459.2) 1240.2 (471.8) 711.2 (187.3) <0.001
Gender, n (%)
Female 36 (52.9) 27(51.9) 9(56.2) 0.987
Male 32 (47.1) 25 (48.1) 7 (43.8)
PMA at extubation (weeks) 30.9 (1.9) 31.1(1.9) 30.5 (2.0) 0.145
Ventilation Variables
FiO,, mean (SD), 0.28 (0.11) 0.24 (0.10) 0.35(0.10) <0.001
PEEP, mean (SD), cm H.O 6.4 (0.9) 6.1(0.8) 7.0 (0.7) <0.001
MAP, mean (SD), cm H,O 10.7 (2.4) 10.3 (2.5) 11.1(2.3) 0.152
Frequency mean (SD), rpm 28.0 (4.6) 28.0 (4.6) 28.1 (4.6) 0.914
Ventilation Variables after Post Extubation
FiO,, mean (SD), 0.30 (0.09) 0.27 (0.07) 0.37 (0.08) <0.001
PEEP, mean (SD), cm H,O 6.5(0.9) 6.2 (0.9) 7.1(0.7) <0.001
MAP, mean (SD), cm H,O 11.6 (3.2) 11.8 (4.3) 11.5 (2.5) 0.786
Frequency mean (SD), rpm 31.3(6.2) 34.6 (5.6) 30.2 (6.0) 0.024

Abbreviations: FiO,, faction of inspired oxygen; MAP, mean airway pressure; PEEP, positive end-expiratory pressure PMA, postmenstrual age.

4.3.2. Predictors of Extubation Failure

To analyze the selected continuous vital sign features relevant to extubation
readiness, their mean and standard deviation were calculated at a simulated
extubation assessment time point. Variables significantly associated with extubation

failure are detailed in Table 4-5. At the time of extubation assessment, heart rate

decorrelation time was notably longer in the extubation failure group (14.857 [5.639])

compared to the extubation success group (12.846 [4.857]). Heart rate skewness also
consistently exhibited negative values across the entire observation window for the
extubation failure group. Similarly, pulse decorrelation time, as measured by pulse
oximetry, was prolonged in the extubation failure group. Furthermore, oxygen
saturation (SpO:) in the extubation failure group demonstrated greater variation and

lower mean values.
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Table 4-5. Clinically relevant features identified for extubation.

Features Extubation Success | Extubation Failure p-value
HR, decorrelation time; 12h, mean (SD) 12.846 (4.857) 14.857 (5.639) 0.002
HR, quantile (qg=0.9), 1h 162.652(14.326) 168.785 (14.,925) 0.001
HR, quantile (qg=0.75), 1h 154.961 (13.762) 163.500 (14.654) <0.001
HR, skew, 6h 0.195 (1.836) -0.740 (2.267) <0.001
HR, skew, 1h 0.403 (1.402) -0.351 (1.438) <0.001
HR., skew, 24h -0.049 (1.787) -0.848 (2.112) 0.001
Pulse, decorrelation time, 24h 24.483 (10.234) 29.276 (10.058) <0.001
Pulse, decorrelation time, 12h 4.983 (6.506) 7.367 (8.353) 0.009
SpO2, approximate entropy (m=2, r=0.1), 12h 0.858 (0.366) 1.088 (0.288) <0.001
SpO,, harmonic mean, 3h 97.760 (1.951) 95.914 (2.620) <0.001
SpO2, mode absolute deviation, 1h 1.636 (1.489) 2.676 (1.631) <0.001
SpO2, mode absolute deviation,24h 1.742 (1.144) 2.627 (1.299) <0.001
SpO2, permutation entropy (d=7, tau=1), 2h 3.486 (1.433) 4.295 (0.988) <0.001
SpOs, q statistic, 6h 77.012 (56.097) 125.697 (67.160) <0.001

Abbreviations: HR, heart rate d from an electro

4.3.3. Model Performance

Model training results based on the proposed continuous vital sign analytics
framework are summarized in Table 4-6. Among the candidate models, the logistic
regression classifier using continuous vital sign—derived features achieved the
highest discriminatory performance in the internal validation cohort, with an

AUROC of 0.976 (95% CI, 0.974-0.978), indicating high discrimination and

outperforming all other models [135] (Table 4-6).

Table 4-6. Performance of predictive models utilizing the proposed continuous

vital sign analysis methodology.

diogram; Pulse, heart rate measured from a pulse oximeter; SpO,, oxygen saturation.

Internal Validation Cohort

Classifier Metrics Accuracy AUROC (CI 95%) AP Recall Precision  F1 Score
Proposed Analytic Methods
Logistic Regression 0.928 0.976 (0.974-0.978) 0.901 0.872 0.815 0.842
Naive Bayes 0.861 0.935(0.932-0.938) 0.729 0.908 0.594 0.719
Random Forest Classifier 0,864 0.961 (0.959-0.963) 0.868 0.833 0.761 0.795
Extra Trees Classifier 0.838 0.953 (0.950-0.955) 0.864 0.816 0.792 0.804
Ada Boost Classifier 0.860 0.928 (0.924-0.932) 0.753 0.778 0.830 0.803
Gradient Boosting Classifier ~ 0.916 0.950 (0.947-0.952) 0.841 0.778 0.830 0.803
Decision Tree Classifier 0.847 0.682 (0.675-0.689) 0.456 0.403 0.805 0.537
MLP Classifier 0.899 0.917 (0.913-0.922) 0.806 0.681 0.821 0.775
Abbreviations: AP, average precision; AUROC, area under the receiver operating characteristic curve; MLP, multi-layer perceptron.
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4.4. Discussion

In this study, we developed a predictive model using continuously recorded vital
signs obtained directly from patient monitors, combined with the proposed analytic
framework for feature extraction and selection. The model demonstrated superior
performance compared with conventional EMR-based models. Evaluation metrics,
including the AUROC, F1 score, and accuracy, indicated consistently high
discriminative ability and calibration across both the development and internal
validation cohorts.

The extubation success rate from our dataset's source institution, using the more
recent internal validation cohort, showed the NExT-Predictor model achieving an
AUROC of 0.752. This performance surpasses that of Gupta et al.[130]'s predictive
model but remains relatively lower compared to models utilizing continuous vital
sign-derived predictors. In contrast, models based on continuous vital sign data
demonstrated exceptionally high AUROC, average precision, and strong calibration.
We hypothesized this discrepancy occurs because models heavily reliant on EMR
data are more vulnerable to clinician input variability and human error. The demand
for continuous physiological predictors grows because EMR data input is clinician-
dependent, with documentation frequency increasing in deteriorating or vulnerable
infants. This introduces potential data bias. Therefore, we expect that continuous
vital sign-based predictors could effectively address the limitations of prominent
EMR-based predictors that currently affect clinical translation due to significant
inter-institutional variability [40].

In this study, the key features selected for the model were derived from time-
domain and frequency-domain methods, which uniquely accessible via continuous
time series analysis. These features contributed to the model's high predictive
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performance. From oxygen saturation, key features extracted included the
approximate entropy, permutation entropy, harmonic mean, q statistics, and mode
absolute deviation within the 24 hours preceding extubation. These results are highly
consistent with the indicators of ROP and intermittent hypoxia previously
demonstrated by Di Fiore, et al. [136].

In NICUs, extubation decisions for preterm infants are primarily determined by
clinical judgment, resulting in substantial variability in practice and frequent
extubation failure [129, 137-139]. While outcomes vary across studies, only 60% to
73% of extremely low birth weight infants are reported to be successfully extubated
[138]. Preterm infants who experience extubation failure are at increased risk of
respiratory deterioration and fluctuations in cerebral blood flow and oxygenation.
Such failure, followed by reintubation, is associated with an extended duration of
mechanical ventilation, typically by 10 to 12 days [137-140]. Prolonged use of
mechanical ventilation has been associated with an increased incidence of BPD and
neurodevelopmental complications [137, 138, 141]. Reintubation, in a select subset
of preterm infants, has been shown to increase the risk of BPD or death
independently of the length of time spent on mechanical ventilation [139]. Overall,
determining the optimal timing for extubation is essential to enhancing both short-
and long-term outcomes in preterm infants. While several predictive tools have been
developed to assess extubation readiness, consistent and reliable methods remain
limited in clinical settings.

This study identified features from real-time patient monitor data to assess
extubation readiness, and the resulting predictive model demonstrated high
classification accuracy for extubation success. Our findings suggest the critical role
of subtle differences in pulmonary oxygenation capacity for successful extubation in

preterm infants. We expect these discoveries will form the basis for future high-
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performance extubation readiness models, providing clinicians with improved
decision-making tools. Furthermore, we anticipate that integrating the key predictors
identified in this research with features from prior studies will lead to substantial
model improvements and contribute to defining more precise extubation decision
guidelines.

% This chapter is based on the previously published paper, [131] W. Song, Y. Hwa
Jung, J. Cho, H. Baek, C. Won Choi, and S. Yoo, "Development and validation of a
prediction model for evaluating extubation readiness in preterm infants,” Int J Med

Inform, vol. 178, p. 105192, Oct 2023.
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Chapter 5. New physiological Risk
Factor of Intraventricular
Hemorrhage of Preterm Infant

5.1. Introduction

IVH is a major cause of morbidity in very low birth weight (VLBW) infants and is
associated with both short-term [142, 143] and long-term neurodevelopmental
impairment [ 144-146]. The incidence of [IVH in VLBW infants was estimated at 50%
in the 1970s [146, 147]. With improvements in neonatal intensive care practices, the
incidence declined to around 20% by the 1990s [145, 148]. Since the early 2000s,
however, IVH rates have remained relatively stable [9, 145, 149]. The pathogenesis
of IVH is multifactorial, primarily involving structural immaturity of the cerebral
vasculature in preterm infants and impaired autoregulation of cerebral blood flow,
both of which contribute to the rupture of fragile vessels within the germinal matrix
[150, 151]. IVH has been associated with a range of clinical risk factors reflecting
its underlying pathophysiology, including perinatal hypoxic-ischemic injury,
respiratory distress syndrome, systemic hypotension, metabolic acidosis,
hypercapnia, coagulation and platelet dysfunction, hypothermia, and hyperglycemia
[150-152]. Current neonatal intensive care practices have focused on mitigating
known risk factors to reduce the incidence of IVH. However, the incidence has not
significantly declined and remains high among infants born at <32 weeks’ GA or
with birth weight <1,500 g [144].

Cranial ultrasound (cUS) is widely used as the standard imaging modality for

diagnosing IVH in preterm infants [153]. However, because it is typically performed
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at scheduled intervals and IVH often occurs without any clinical signs, the condition
may go undetected for several hours or even days after onset [154]. Early
identification of infants at risk allows for timely, targeted interventions to reduce the
likelihood of further brain injury and improve long-term outcomes [155].

In this study, we identified risk factors for early IVH detection using the
previously proposed framework. We also demonstrated the utility of applying
analytical methods from other domains, not traditionally used in time series analysis,

within our framework for actual IVH identification.

5.2. Methods

5.2.1. Study Design

This study was approved by the Institutional Review Board of SNUBH (IRB No. X-
2409-926-902). As a retrospective secondary analysis utilizing de-identified medical
records, the requirement for informed consent was waived. The study followed the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
guidelines for case-control studies [156].

In this study, we included preterm infants admitted to the NICU of SNUBH
between March 2018 and December 2022. Infants born at a GA of less than 32 weeks
or with a birth weight below 1,500 grams were included in this study. Exclusion
criteria included death within 24 hours of birth, major congenital anomalies, missing

maternal data, or initiation of vital sign monitoring more than 3 hours after birth.

5.2.2. Data sources

Demographic and clinical variables were extracted from the EMR and NICU
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discharge reports. These included antenatal and perinatal factors, maternal and
delivery details, neonatal resuscitation data, umbilical cord blood gas values,
postnatal arterial blood gas measurements, laboratory test results, and respiratory
support parameters, including ventilator settings within the first 24 hours of life.
Continuous vital sign data, including heart rate, respiratory rate, oxygen saturation,
body temperature, and blood pressure, were recorded at 30s intervals using Philips

Patient Monitoring systems equipped with standard clinical measurement

devices.

5.2.3. Case and Control Definition

Case infants (IVH group) were identified based on a diagnosis of grade II or higher
IVH within the first 7 days of life, confirmed by brain ultrasonography or other
imaging modalities. The control group (non-IVH group) consisted of infants with no
evidence of IVH beyond germinal matrix hemorrhage (GMH) or grade I IVH.
Controls were randomly selected at a 2:1 ratio and individually matched to each case
by GA (x1 week) and birth weight (300 g). Magnetic resonance imaging findings

were excluded from the analysis to ensure consistency in diagnostic criteria.

5.2.4. Covariates

This study aimed to identify clinically relevant risk factors for early intervention and
prevention of IVH-related symptoms using routinely available monitoring data. The
analysis was restricted to clinical variables and vital signs documented within the
first 24 hours of life. Clinical covariates included demographic information, perinatal
factors, IVH-related diagnoses, umbilical cord blood gas parameters, and neonatal

resuscitation details. Considering that VLBW infants frequently require respiratory

78



support, we also calculated the Respiratory Severity Score (RSS), ROX index, and
the oxygen saturation to fraction of inspired oxygen (SpO/FiO, or SF ratio) ratio
[132, 133, 157]. To detect subtle variations in vital signs and potential disruptions in
cerebral autoregulation, derived features were extracted using time-series analysis

methods, time—frequency domain techniques, and decorrelation time analysis.

5.2.5. Statistical Analysis

Baseline characteristics were described using descriptive statistics. The distribution
of continuous variables was assessed for normality using Kolmogorov—Smirnov test.
Variables with a normal distribution are reported as mean with standard deviation
(SD) and compared using two-tailed Student’s t-tests. Non-normally distributed
variables were reported as median with interquartile range (IQR) and analyzed using
the Mann—Whitney U test. Categorical data were compared using either the Chi-
Square test or Fisher’s exact test, as appropriate. Variables with more than 50%
missing data were excluded from the analysis.

To identify indicators associated with [IVH, we applied the continuous vital sign
analysis framework developed in this study to select key covariates. We then used
multivariable logistic regression, adjusting for GA and birth weight, to assess the
associations between [VH outcomes and these candidate covariates. Odds ratios
(ORs) were calculated to quantify these associations. ORs and corresponding 95%

confidence intervals (Cls) were estimated.
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5.3. Results

5.3.1. Study Design

During the study period, 456 infants who met the inclusion criteria were admitted to
the NICU. Of these, 70 were excluded due to congenital anomalies (n=7), death
within the first day of life (n=4), or insufficient clinical data (n=49). Among the 386
eligible infants, 71 were diagnosed with [VH, stratified by severity as follows: GMH
or Grade I (n=42, 59%), Grade Il (n=16, 23%), Grade III (n=5, 7%), and Grade IV
(n=8, 11%). For the primary analysis, 29 infants with IVH and matched 58 non-IVH

controls were selected (Figure 5-1).

456 Infants with GA<32 weeks
or BW<1,500 g

70 Excluded
4 Expired within 1 days
17 Had congenital anomaly
49 Had insufficient data

386 Infants included for analysis

29 Cases with IVH
16 IVH Grade 11
5 IVH Grade III
8 IVH Grade IV

357 Eligible for controls

58 Matched controls

Figure 5-1. Flow diagram of inclusions and exclusions for the study.

Table 5-1 shows a summary of the clinical characteristics of the two groups.
The mean (SD) GA was 26.2 (2.7) and 26.9 (2.5) weeks in the IVH and the non-IVH
groups, respectively. The mean (SD) birth weight was 865.0g (301.1) and 890.9g

(323.0), respectively, with 4 (14.3%) and 14 (24.6%) infants being small for
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gestational age (SGA). More infants in the [VH group received invasive ventilation
at birth (27 [93.1%]) than those in the non-IVH group (41 [70.7%]). In terms of GA,
birth weight, APGAR scores at 1 and 5 min, or prenatal characteristics, the groups
were not significantly different. However, the base excess of cord blood gas analysis
was less in the IVH group (mean [SD], -5.4 [5.1] mmol/L) than in their matched
controls (-3.0 [3.1] mmol/L). No difference was found in the occurrence of persistent
pulmonary hypertension among newborns (PPHN). Most clinical characteristics did
not significantly differ between the two groups. The median (IQR) time of vital sign
measurements after birth was 15 (9.25) min. The time to start patient monitoring did

not differ between the IVH and non-IVH groups.
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Table 5-1. Baseline characteristics.

All Case Control  p-value
Number of infants 87 29 58
Perinatal factor
Maternal age, mean (SD), y 34.7 (3.5) 34.3 (4.1) 349 (3.2) 0.445
Maternal underlying disease
Chorioamnionitis, n (%) 26 (29.9) 10 (34.5) 16 (27.6)  0.679
GDM, n (%) 8(7.3) 4(13.8) 3(52) 02157
IVF, n (%) 18 (20.7) 6(20.7) 12(20.7)  1.000
Oligohydramnios, n (%) 13 (14.9) 1(3.4) 12(20.7)  0.052f
Preeclampsia, n (%) 24 (27.6) 4(13.8) 20 (34.5) 0.075
PROM, n (%) 34 (39.1) 13 (44.8) 21(36.2) 0.587
Prenatal antibiotics, n (%) 34 (39.1) 11 (37.9) 23(39.7)  1.000
Antenatal steroid, n (%) 4 (4.6) 3(10.3) 1(1.7)  0.106"
Delivery mode, n (%)
Cesarean section 62 (71.3) 17 (58.6) 45(77.6) 0.112
Gender, n (%)
Female 42 (48.3) 12 (41.4) 30 (51.7)  0.495
Male 45 (51.7) 17 (58.6) 28(48.3)
Multiple Birth, n (%) 35(40.2) 14 (48.3) 21(36.2) 0395
Gestational age, mean (SD), weeks 26.6 (2.6) 26.2 (2.7) 26.9 (2.5) 0.253
Birth weight, mean (SD), g 882.2(314.4) 865.0(301.1) 890.9(323.0) 0.714
Birth length, mean (SD), cm 343 (4.1) 345 (4.1) 342 (4.1) 0.790
Birth Head Circumference, mean (SD), cm 23.8(2.9) 24.3 (2.7) 23.7(3.0) 0.378
APGAR (1 minute), median (IQR) 4.0 [3.0-5.0] 3.0 [2.0-5.0] 4.0[3.0-5.0] 0.138
APGAR (5 minutes), median (IQR) 7.0 [6.0-8.0] 7.0 [5.0-8.0] 7.0 [6.0-8.0]  0.424
APGAR (1 minute)<7, n (%) 81(93.1) 26 (89.7) 55(94.8)  0.396
APGAR (5 minutes)<7, n (%) 30 (34.5) 12 (41.4) 18 (31.0) 0.473
SGA, n (%) 18 (21.2) 4(14.3) 14 (24.6)  0.419"
Cord blood gas analysis
pH, mean (SD) 7.3(0.1) 7.3(0.1) 7.3(0.1) 0.138
BE, mean (SD), mmol/L -3.8 (4.0) -5.4(5.1) -3.0(3.1)  0.045
PCO,, mean (SD), mmHg 48.1 (13.7) 50.8 (19.7) 46.7(9.6)  0.342
Resuscitation
PPV, n (%) 67 (77.0) 19 (65.6) 48 (82.8)  0.126
Intubation, n (%) 58 (66.7) 21(72.4) 37(63.8) 0.574
Epinephrine, n (%) 2(2.3) 1(3.4) 1(1.7)  1.000"
CM, n (%) 2(2.3) 1(3.4) 1(1.7)  1.000"
RDS, n (%) 73 (83.9) 26 (89.7) 47 (81.0)  0.369
Ventilatory support mode within 24 hours after birth
Invasive Ventilation, n (%) 68 (78.2) 27 (93.1) 41(70.7)  0.035
HFOV, n (%) 27 (39.7) 11 (40.7) 16 (39.0)  1.000
Conventional Ventilation, n (%) 41 (60.3) 16 (59.3) 25(61.0)  1.000
Inhaled NO within 24 hours after birth, n (%) 14 (16.1) 8(27.6) 6(10.3)  0.061
Inotropics administration within 24 hours, n (%) 1(1.1) 0(0.0) 1(1.7)  1.000"
Laboratory finding within 24 hours after birth
Blood gas analysis
PCO», mean (SD), mmHg 42.3(7.3) 43.0 (6.6) 42.0(7.6) 0.524
pH, mean (SD) 7.3 (0.1) 7.2 (0.1) 7.3(0.1) 0.112
Hemoglobin, mean (SD), g/dI 14.8 (2.1) 14.7 (2.4) 148 (2.0) 00915

Abbreviations: BE, base excess of cord blood gas analysis; CM, cardiac massage; FiO», fraction of inspired oxygen; GDM, gestational diabetes mellitus; HFOV,
high frequency oscillatory ventilation; IVF, in vitro fertilization; NO, nitric oxide; PCO,, partial pressure of carbon dioxide; PPV, positive-pressure ventilation; PROM,

premature rupture of membranes; RDS, respiratory distress syndrome.
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5.3.2. Risk Factors Associated with IVH

Table 5-2 shows the results of univariable and multivariable analyses of the selected
covariates. From 247,000 continuous vital sign candidate features, 20 features were
selected. Several vital signal-related risk factors met the predefined p-value threshold.
Among the demographic variables, we included preeclampsia, base excess, and
resuscitation with positive pressure ventilation (PPV). After adjusting for
multicollinearity, three covariates remained; only SpO» decorrelation time was found
to be significantly associated with [VH in the multivariable analysis ( Table 5-2). An
increase in SpO, decorrelation time was associated with a higher risk of IVH
(adjusted OR [aOR], 1.53; 95% CI, 1.08-2.17 for per minute increase). Infants with
SpO: decorrelation time>5.62 minutes (56.2%), based on the optimal cutoff, had an
11-fold increased risk of IVH compared with infants without such prolonged

decorrelation time (aOR, 11.35; 95% CI, 3.54-36.38).

Table 5-2. Univariate and multivariable analysis of risk factors associated

with IVH.

Univariate Association Multivariable

Risk Factor

Adjusted Results
aOR (95% CI)  p-value

Unadjusted Results
OR (95% CI) p-value

Adjusted Results
aOR (95% CI)  p-value

Unadjusted Results
OR (95% CI) p-value

SpO> Decorrelation Time
SBP, MAD of Ax (Oh-12h)
SBP, Median of Ax (Oh-6h)

1.81 (1.31-2.51) 0.0004
0.46 (0.28-0.74)  0.0013
0.68 (0.55-0.85) 0.0008

1.80 (1.31-2.46) 0.0003
0.49 (0.32-0.75)  0.0011
0.70 (0.58-0.86)  0.0004

1.58 (1.10-2.25) 0.0124
0.68 (0.39-1.20) 0.1873
0.85 (0.67-1.08) 0.1741

1.52 (1.07-2.16)  0.0186
0.76 (0.47-1.21)  0.2448
0.84 (0.68-1.05) 0.1220

Abbreviations: aOR, adjusted odds ratio; CI, confidence interval; MAD, mean absolute deviation; SBP, systolic blood pressure; SpO», oxygen saturation.

5.3.3. Oxygen Saturation Decorrelation Time

The mean time for SpO; decorrelation and raw SpO; levels during the first 24h after
birth, and their 95% Cls, are shown in Figure 5-2, Figure 5-3 and Figure 5-4,
stratified by IVH and non-IVH groups. During the first 4h after birth, SpO-
decorrelation time trajectories were highly unstable in both groups. The non-IVH

group exhibited a stable trajectory 7h after birth. In contrast, the IVH group showed
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significantly longer decorrelation times than the non-IVH group, indicating that the
first SpO- decorrelation time was sustained for an increased duration in the IVH
group. Additionally, SpO- decorrelation time in the non-IVH group was significantly
lower than those in the IVH group after the 7-hour mark. However, the raw SpO;
trends were not clearly different between the two groups, with most SpO, values
remaining >95%.

For a more detailed analysis of the fluctuations related to [IVH, we visualized
the autocorrelation values for each differential order and highlighted the variations
across the time lags using density plots (Figure 5-4). In SpO, autocorrelation, which
reflects persistent instability in oxygen saturation, the density of autocorrelation
values in the non-IVH group spread toward lower values after birth. However, the
IVH group maintained consistently high values (Figure 5-4 A and B). For the first-
and second-order differentials, which show instability in the rate of SpO, changes,
the IVH group showed sustained instability in SpO2 change rates, consistent with
autocorrelation spanning 2—4 min (20%—-40%). (Figure 5-4 C and D). Conversely, in
the non-IVH group, the autocorrelation values decayed to zero 6 h post-birth (Figure
5-4 E and F). Additionally, based on the density plots, infants in the non-IVH group
appeared to recover faster from SpO» changes and stabilized within a few minutes.
In contrast, infants in the IVH group showed longer oxygen instability that persisted

for >5 min (Figure 5-2 A and B).
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Figure 5-2. Trend and instability density in SpO; decorrelation time. (A) Line

IVH

Time Lag(min)

IVH

plot of SpO: decorrelation time over the first 24 h after birth in the IVH and
non-IVH groups. The shaded area shows 95% CI of the SpO; decorrelation
time. (B) Line plot of raw SpO; over the first 24 h after birth in the IVH and
non-IVH groups. The shaded area represents the 95% CI of SpO.. (C) Density
plot of autocorrelation by time lag in the IVH and non-IVH groups. The x-axis
represents the elapsed hours after birth, the y-axis represents the time lag, and
the color intensity indicates the projections of autocorrelation values by time

lag.
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Figure 5-3. Trend and density plot of SpO; decorrelation time across groups in
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Figure 5-4. Trend and density plot of SpO; decorrelation time in each order
differential. (A) Line plot of SpO; decorrelation time over the first 24 h after
birth in the IVH and non-IVH groups. (B) Density plot of autocorrelation by
time lag in the IVH and non-IVH groups. (C) Line plot of first-order
differential SpO: decorrelation time over the first 24 h after birth in the IVH
and non-IVH groups. (D) Density plot of first-order differential SpO:
autocorrelation by time lag in the IVH and non-IVH groups. (E) Line plot of
second-order differential SpO; decorrelation time over the first 24 h after
birth in the IVH and non-IVH groups. (F) Density plot of second-order

differential SpO; autocorrelation by time lag in the IVH and non-IVH groups.
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Figure 5-5. Autocorrelation density plot of SpO: decorrelation time at 18
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5.3.4. Sensitivity Analyses

The results of the sensitivity analysis of the minimum sampling rate were obtained

by undersampling each epoch (Figure 5-6). SpO. decorrelation time in the 1-minute

sampling period (1/60 Hz) was similar to that of the primary analysis. However, no

significant differences were observed between the two groups for sampling periods

longer than 5min sampling period. The results of the sensitivity analyses using the

modified case-control definition to examine potential bias due to matching

methods or IVH grade were consistent with those of the primary analysis (Table

5-3. Ratios of risk factors for each ). The results of the regression model sensitivity

analyses, to examine the possible bias due to the regression model, were consistent

with those of the primary analysis (Table 5-4).
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Figure 5-6. Forest plot of SpO; decorrelation time for each sampling period.
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Table 5-3. Ratios of risk factors for each group.

Univariate Multivariate
Unadjusted Results Adjusted Results Unadjusted Results Adjusted Result
Risk Factor OR (95% CI) p-value aOR (95% CI) p-value OR (95% CI) p-value a0R (95% CI) p-value
Matched IVH (Any Grade)/Non-IVH
SpO, Decorrelation 1.47 (1.25-1.73) <0.0001 1.41 (1.19-1.69) 0.0001 1.42 (1.20-1.68) <0.0001 1.38 (1.15-1.65) 0.0004

SBP, MAD of Ax (0h-12h) 0.83 (0.68-1.01) 0.0569 0.87 (0.72-1.05) 0.1567 0.97 (0.78-1.19) 0.7595 0.97 (0.79-1.20) 0.8127
SBP, Median of Ax (Oh-6h) 0.89 (0.81-0.97) 0.0106 0.91 (0.83-0.99) 0.0302 0.93 (0.84-1.03) 0.1714 0.97 (0.83-1.14) 0.1835
Matched IVH/Control (Non-IVH+GMH)

SpO2 Decorrelation 1.80 (1.34-2.41 0.0001 1.79 (1.32-2.43) 0.0002 1.51 (1.10-2.08) 0.0113 1.55 (1.12-2.15) 0.0082
SBP, MAD of Ax (Oh-12h) 0.50(0.33-0.73) 0.0004 0.49 (0.33-0.75) 0.0008 0.80 (0.52-1.24) 0.3215 0.75 (0.46-1.23) 0.2579
SBP, Median of Ax (Oh-6h) 0.68 (0.56-0.83) 0.0001 0.67 (0.54-0.83) 0.0003 0.81 (0.65-1.00) 0.0549 0.86 (0.62-1.20) 0.0803
Unmatched IVH/Control

SpO2 Decorrelation Time 2.40 (1.80-3.18) <0.0001 2.09 (1.53-2.86) <0.0001 2.05(1.51-2.79) <0.0001 1.93 (1.39-2.66) 0.0001
SBP, MAD of Ax (0h-12h) 0.35(0.23-0.54) <0.0001 0.50 (0.33-0.77) 0.0013 0.55(0.32-0.94) 0.0285 0.65(0.39-1.10) 0.1104
SBP, Median of Ax (Oh-6h) 0.58 (0.47-0.73) <0.0001 0.71 (0.58-0.87) 0.0011 0.84 (0.67-1.05) 0.1228 0.87 (0.70-1.08) 0.2219
Unmatched IVH (Any Grade)/Control

SpO2 Decorrelation Time 1.52(1.30-1.78) <0.0001 1.41 (1.19-1.67) 0.0001 1.48 (1.26-1.74) <0.0001 1.38 (1.16-1.64) 0.0003

SBP, MAD of Ax (Oh-12h) 0.79 (0.65-0.96) 0.0185 0.87(0.72-1.04) 0.1299 0.92 (0.74-1.14) 0.4313 0.95(0.77-1.17) 0.6136

SBP, Median of Ax (0h-6h)  0.89 (0.81-0.97)  0.0082 0.92 (0.84-0.99) 00455 0.95(0.86-1.05) 03005 0.95(0.86-1.05)  0.3250

Unmatched IVH/Control (Non-IVH+GMH)

SpO2 Decorrelation Time 2.31(1.75-3.05) <0.0001 1.97 (1.45-2.67) <0.0001 1.95 (1.45-2.62) <0.0001 1.81(1.33-2.48) 0.0002

SBP, MAD of Ax (0h-12h) 0.36 (0.24-0.55) <0.0001 0.52(0.34-0.78) 0.0014 0.62 (0.37-1.02) 0.0621 0.71 (0.44-1.16) 0.1744

SBP, Median of Ax (Oh-6h) 0.58 (0.46-0.72) <0.0001 0.71 (0.58-0.87) 0.0009 0.82 (0.65-1.03) 0.0830 0.85 (0.69-1.05) 0.1287
Abbreviations: aOR, adjusted odd ratio; MAD, median absolute deviation; SBP, systolic blood pressure.

Table 5-4. Odds ratios of risk factors for various regression models.

LR LASSO GLM
Risk Factor aOR (95%CI) p-value aOR (95%CI)  p-value aOR (95%CI) p-value
SpO: fluctuation 1.58 (1.10-2.25) 0.0124 1.57 (1.11-2.21) 0.0109 1.09 (1.03-1.15) 0.0020
SBP, MAD of Ax (0h-12h) 0.68 (0.39-1.20) 0.1873 0.68 (0.39-1.21) 0.1892 0.94 (0.89-1.00) 0.0522
SBP, Median of Ax (Oh-6h) | 0.85 (0.67-1.08) 0.1741 0.85(0.67-1.08) 0.1715 0.98 (0.96-1.01) 0.1936

Abbreviations: aOR, adjusted odd ratio; MAD, median absolute deviation; MBP, mean blood pressure; SBP, systolic blood pressure; LR, logistic regression; LASSO,
least absolute shrinkage and selection operator; GLM, generalized linear model.

5.4. Discussion

In this study, preterm infants who developed IVH exhibited significantly greater
oxygen saturation variability and prolonged periods of instability, as quantified by
SpO: decorrelation time, during the first 24 hours of life compared with infants
without IVH.

Decorrelation time, a metric widely used in non-medical domains to quantify
regional persistence or variations in decay time, gives unique advantages for

analyzing time-series data [158-163]. Previous studies showed that decorrelation
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time is affected by fluctuations or variations with amplitudes exceeding those of
white noise. Specifically, slower decay rates and sustained oscillatory variations are
linked to prolonged decorrelation times. Notably, the decorrelation time obtained
from biosignals with varying amplitudes and heterogeneous patterns within the same
observation window is useful for inferring delayed autoregulatory responses in
specific signal components. Theoretically, under the weak stationary assumption,
contributing white noise to decorrelation time converges to zero, making it a robust
metric of physiological variability. Therefore, only SpO, met these conditions and
was seen as a reliable risk factor for IVH. Considering these attributes, decorrelation
time was hypothesized to provide a reliable indicator of recovery time and
autoregulatory function in neonates, offering a novel tool for assessing physiological
stability in this vulnerable population.

Mean and raw continuous SpO> levels within the first 24 hours of life were
similar between the IVH and non-IVH groups, suggesting that oxygen saturation
fluctuations may be subtle and not readily detectable in routine clinical assessment.
Additionally, no significant differences were observed in respiratory support
parameters, including FiO,, RSS, and ROX index, between the groups. These
findings reflect intrinsic differences in respiratory physiology rather than variations
in clinician-directed management.

The regulation of cerebral blood flow during hypoxemia involves multiple
integrated mechanisms that promote vasodilation. These include direct action on
vascular smooth muscle, endothelium-mediated pathways, and the release of
signaling molecules such as adenosine and potassium ions from neurons and glial
cells. Furthermore, the hypoperfusion-reperfusion cycle that can result from such
vascular changes is a key factor in the pathogenesis of IVH in preterm infants [37,

164-169].
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Given that minor SpO; fluctuations can correspond to major PaO» changes in
preterm infants, persistent instability may trigger damaging cerebral hypoperfusion-
reperfusion cycles in the vulnerable germinal matrix [37, 150]. In this study, we
observed a critical divergence in SpO, patterns between infants who did and did not
develop IVH, occurring after the initial phase of postnatal adaptation [170, 171].
While both groups had unstable SpO, during the first four hours, infants in the non-
IVH group achieved stability by seven hours. In contrast, infants who developed [IVH
demonstrated sustained fluctuations and a longer recovery from hypoxic episodes.
This suggests that the inability to stabilize SpO; after the first six hours of life, rather
than early fluctuation itself, may be a key early marker of impaired cerebral
autoregulation and heightened IVH risk.

Previous studies have identified key risk factors for IVH, leading to established
prevention and management strategies. Perinatal interventions primarily involve
preventing premature birth, optimizing labor and delivery (e.g., antenatal
glucocorticoids, delayed cord clamping, thermal stability), and providing high-
quality respiratory care [172-175]. Postnatal efforts aim to stabilize cerebral blood
flow through nursing bundles, slow blood draws, correction of hemodynamic and
coagulation abnormalities, and pharmacological therapies such as phenobarbital and
indomethacin [175-177]. However, persistent challenges in effectively stabilizing
cerebral blood flow hinder further reductions in IVH occurrence.

While studies have attempted to predict [IVH occurrence, a clinically applicable
model has yet to be developed [155, 169, 178-180]. A key impediment is the inability
to confirm IVH onset in real time. Standard bedside cranial ultrasound, being a
manually conducted procedure, complicates accurate temporal diagnosis. However,
given that most IVH cases manifest within 72 hours of birth, with approximately 50%

emerging within the first 24 hours, hemodynamic fluctuations during this initial 24-
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hour window may be closely linked to its development [154, 180-182].

Recent research has explored early markers for IVH in extremely preterm
infants. lyer, et al. [155] quantitatively assessed electroencephalography (EEG)
during the first 72 hours of life in 25 infants, identifying sharper and less symmetric
EEG burst shapes as early indicators of IVH. Cimatti, et al. [169] investigated
changes in cerebral oxygenation (CrSO,), cerebral fractional oxygen extraction
(cFTOE), and the tissue oxygenation-heart rate reactivity index (TOHRXx) preceding
and following IVH occurrence within the same 72-hour postnatal period. In infants
who developed IVH, CrSO, demonstrated an initial increase followed by a plateau,
while cFTOE decreased before subsequently rising, with peak changes occurring
between 24 and 48 hours. Conversely, these indicators remained stable in infants
without IVH, underscoring the role of impaired cerebral autoregulation in IVH
pathogenesis. These novel bedside measures exhibit high diagnostic accuracy,
potentially enabling IVH detection prior to ultrasound confirmation, thus offering
opportunities for earlier intervention and personalized care. This study similarly
investigates differences between groups using real-time neonatal monitoring data.
However, current real-time monitoring methods like EEG and near-infrared
spectroscopy (NIRS) have limitations. EEG requires specialized equipment and
expertise for interpretation and is prone to artifacts. NIRS, while more accessible
than EEG, is susceptible to detection errors from external light, skin thickness, and
movement artifacts. Furthermore, signal fluctuations and inherent variability in
infant cerebral oxygenation hinder the establishment of universal predictive
thresholds for IVH. Consequently, these methods face limitations compared to more
accessible and widely used SpO, monitoring.

To enable precise monitoring of subtle vital sign changes, we utilized real-time

vital sign data, recorded every 30 seconds, from the first 24 hours of life. Our
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comprehensive analysis, employing descriptive statistics, time series analysis, time-
frequency domain analysis, and autocorrelation methods, revealed that differences in
SpO: decorrelation times were detectable at shorter intervals (1-5 minutes). These
differences were indistinguishable with data recorded at intervals of <15 minutes,
underscoring the limitation of traditional medical records that rely on longer
measurement intervals for identifying subtle, clinically significant variations.

A primary strength of this study lies in its capacity to detect subtle, clinically
imperceptible variations in SpO, through real-time vital sign monitoring at 30-
second intervals, even when raw SpO- values consistently remain above 95%. Our
analysis of these real-time physiological indicators offers a novel method for
determining the probability of IVH occurrence, thereby facilitating bedside clinical
decision-making and enabling more precise respiratory and cardiovascular
management of preterm infants in the NICUs.

Our study was limited by its retrospective design. First, we could not include
direct measures of cerebral perfusion/oxygenation (e.g., NIRS) or comprehensive
cardiac function via echocardiography. We also lacked real-time values for invasive
blood gas parameters, which are known to significantly influence cerebral blood flow.
However, we demonstrated that the frequency and mean values of blood gas analyses
did not differ between the IVH and non-IVH groups during the first 24 hours of life.
Future research should address these gaps by incorporating non-invasive real-time
monitoring methods, such as transcutaneous CO, monitoring and NIRS.

% This chapter will be submitted to a peer-reviewed journal for publication.
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Chapter 6. Conclusion

This study introduces an efficient and scalable methodology and framework for the
extraction and selection of features from continuous vital signs, an area holding
substantial recent promise. This methodology was specifically designed to address
the unique characteristics of vulnerable preterm infants and their continuous vital
signs in the NICU. Furthermore, we investigated clinically relevant risk factors and
developed a predictive model, thereby substantiating the feasibility and applicability
of continuous vital signs through external validation.

Our methodology features a flexible pipeline, enabling easy integration of
diverse feature calculation methods and direct analysis of their clinical significance.
We further applied case-control emulation and FDR control method using
established clinical statistical tests and estimators. This approach mitigates false
positives from multiple comparisons, ensuring reliable results. Notably, the process
was designed to be partitionable, enhancing scalability.

To validate our methodology, we implemented the framework utilizing a
distributed computing architecture based on the MapReduce model's divide-and-
conquer concept. This implementation was feasible due to the unidirectional design
of our analysis methods and their reliance on separate resample or subsample-based
analysis, maintaining reliability during computation. Although our current
implementation operated on a single server and used a basic MapReduce model, it
has the potential for future extension to include real-time analysis capabilities
through features like in-memory databases or optimized NoSQL-based aggregation,
which will be explored in future research. We anticipate that this validated and robust
methodology can be expanded to integrate data from various institutions or by

incorporating additional deep learning nodes.
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The features derived from our proposed methods exhibited distinct
characteristics for each morbidity. In sepsis and all-cause mortality study, we
observed a negative correlation between sepsis and heart rate entropy, consistent
with previous HRC research. This implied that heart rate variability and entropy,
often collectable from patient monitor at 0.5—-1 Hz in most NICUs, can achieve
similar performance to ECG-based systems like the HeRO score. The inclusion of
pulse oximeter entropy with similar or identical contributions to heart rate features
suggests a promising for detecting infection and deterioration in patients for whom
ECG measurement is challenging, or for discharged neonates in home care settings,
given the ease of use of pulse oximeters. In extubation readiness, while previous
extubation readiness predictive models showed valid performance even across
different internal validation timeframes, we identified that integrating continuous
vital signs significantly enhances the accuracy of patient status assessment. In IVH
study, our methodology successfully identified SpO- instability, derived using the
decorrelation time method from outside the traditional medical domain, as a novel
physiological marker for IVH onset detection. We expect that this newly identified
physiological marker could enable proactive interventions before severe IVH
develops, thereby improving patient outcomes.

This study has limitations across technical, statistical, and clinical domains,
which inform areas for future research.

From a technical perspective, the limitations are as follows. Firstly, the
MapReduce model utilized in this study does not represent the current state-of-the-
art methodology. Consequently, the implemented framework may exhibit
significantly slower processing performance and higher latency compared to
contemporary approaches, such as those employing in-memory databases. However,

since the algorithms and methods proposed in this study are fundamentally
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compatible with distributed computing, they can be readily adapted to more
advanced database technologies or those supporting efficient aggregation. Therefore,
future research should investigate which database and architectural configurations
are most efficient for identifying key risk factors and features across various database
systems.

Secondly, our proposed framework presents security vulnerabilities. Due to
scalability concerns with CouchDB's default JavaScript-based query server, this
study developed a custom Python-based query server. However, systems that execute
scripts, such as Python, are susceptible to exploits from external intrusions. This
inherent risk has led to a recent trend where external script-supporting query servers
are only offered with limited functionality. Accordingly, enhancing the security of
data transmission and the query server itself is crucial for the practical application of
this framework.

Thirdly, this study did not implement specific load balancing or data
redistribution mechanisms. A bottleneck in a single server can consequently extend
the overall execution time. Therefore, any real-world application of this framework
would necessitate incorporating strategies such as task replication and data
redundancy to ensure robust performance.

Finally, the reported performance metrics were derived from a Kubernetes
cluster simulated using Kind. As such, these simulations do not account for network
latency or bandwidth, nor do they involve physically distinct servers. Consequently,
the actual performance when deploying the framework across multiple physically
separate nodes may differ considerably. Therefore, future research should further
evaluate the impact of network considerations on performance.

From a statistical perspective, the limitations are as follows. First, further

research is required to determine the optimal number of resampling iterations and an
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appropriate cutoff value. This study applied a minimum of 200 resampling iterations;
additional analysis is needed to assess the extent to which a greater number of
iterations or resampling improves statistical power and FDR mitigation.

Second, the estimators used in this study do not reflect modern approaches.
Recent research, for example, has explored applying deep learning-based estimators,
such as the X-model or knockoff filter. Consequently, this study did not investigate
the specific characteristics or performance implications associated with different
types of estimators. Therefore, further research is needed to investigate the
characteristics of each estimator.

The clinical limitations are as follows. First, data scarcity for external validation
posed a significant challenge. Our analyses exclusively utilized the UVA NICU
dataset for external validation. This dataset's focus on all-cause mortality also
restricted our capacity to conduct direct, event-specific performance comparisons.
These constraints stem from the general scarcity of continuous vital sign databases
for NICU preterm infants, coupled with a lack of linked demographic or diagnosis
data in existing repositories.

Second, the limited subject numbers within specific event cohorts restricted the
study scope. The count of preterm infants included in certain event analyses was
notably restricted. For instance, the IVH cohort comprised only 29 infants.
Consequently, further research is crucial to ascertain the external validity of the
identified predictors across diverse institutional settings.

This study overcomes limitations of computational burden and restricted time
series analysis in conventional clinical research. By advancing continuous vital sign
research and its clinical utility, our work aims to improve research efficiency and

address clinical needs.
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